Persilastaffanes: silicon frameworks with delocalized sigma electrons

Jan 09, 2012
Persilastaffanes: silicon frameworks with delocalized sigma electrons

(PhysOrg.com) -- Persilastaffanes are an unusual new class of compounds that are introduced in the journal Angewandte Chemie by Japanese researchers led by Takeaki Iwamoto at Tohoku University. They are rod-shaped molecules with a core consisting of one or more tiny “cages” made of silicon atoms. Even more unusual than the name and structure of these materials are the properties of their electrons, which make the materials intriguing candidates as building blocks to make new materials for electronic applications.

Where does the name persilastaffane come from? Persila indicates an organic molecule in which all (“per”) carbon atoms are replaced by silicon atoms (“sila”). A staffane is a special arrangement of five carbon atoms: two “bridgeheads” are bound to each other by way of three “bridges”, each of which has a carbon atom at its center. This results in a cage-like spatial structure. Alternatively, the structure of the cage can be viewed as a wavy ring made of four carbon atoms in which two opposite sides are additionally bridged by another carbon atom. A persilastaffane is a molecule that contains this type of cage made out of silicon atoms.

The Japanese team has developed a synthetic technique to make containing one, two, or three such cages. What is so fascinating about these rod-shaped molecules? To date, there have been few studies of linear chains of silicon-containing ring systems; however theory suggests that there should be significant interactions between the cages. In these cases, the bonding electrons (sigma electrons) in the silicon–silicon bonds should not be localized between the two bonding partners as is usual in chemical bonds; instead, they should be able to move freely (delocalized) over the entire three-dimensional framework of , as in solid silicon.

This property is very interesting because silicon with delocalized sigma electrons absorb light in the UV range, as well as being light-sensitive or conducting. They can also become conducting under light. Iwamoto and his colleagues examined the tiny rods by spectroscopic methods. They were able to confirm considerable delocalization of the sigma electrons over the silicon cages. Iwamoto remarks: “Persilstaffanes are fascinating rod-shaped silicon molecules that could serve as linear connectors for novel silicon-based finely defined materials, such as conductive molecular wires.”

Explore further: Proteins: New class of materials discovered

More information: Takeaki Iwamoto, Persilastaffanes: Design, Synthesis, Structure, and Conjugation between Silicon Cages, Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201106422

Related Stories

Wired up and ready to glow

Dec 10, 2010

Thirty years ago, no one believed that elements other than carbon, nitrogen, and oxygen could form double bonds at room temperature. But the discovery of 'kinetic protection' ligands -- large, bulky molecules ...

A diamond ring sparks a paradigm shift

Jun 06, 2011

The sweet smell of benzene gave birth to the term ‘aromatic’ molecules, but it is the chemical bonds within these compounds that have fascinated researchers for almost 200 years. Encasing alternating ...

Could silicon be ideal in quantum computing?

Sep 16, 2011

(PhysOrg.com) -- "Quantum computing could provide a way to significantly speed up the way we process certain algorithms," Malcolm Carroll tells PhysOrg.com. "The primary issue, though, is that you need a well controlled two-le ...

Recommended for you

Proteins: New class of materials discovered

14 hours ago

Scientists at the Helmholtz Center Berlin along with researchers at China's Fudan University have characterized a new class of materials called protein crystalline frameworks.

The fluorescent fingerprint of plastics

Aug 21, 2014

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

Aug 21, 2014

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Researchers create engineered energy absorbing material

Aug 21, 2014

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

User comments : 0