Paddlefish sensors tuned to detect signals from zooplankton prey

Jan 05, 2012

Neurons fire in a synchronized bursting pattern in response to robust signals indicating nearby food.

In 1997, scientists at the Center for Neurodynamics at the University of Missouri - St. Louis demonstrated that special sensors covering the elongated snout of paddlefish are electroreceptors that help the fish detect by responding to the weak voltage gradients that swimming zooplankton create in the surrounding water. Now some of the same researchers have found that the electroreceptors contain oscillators, which generate rhythmical firing of electrosensory neurons. The oscillators allow the electroreceptors to create a dynamical code to most effectively respond to emitted naturally by zooplankton.

The results are presented in a paper appearing in the AIP's journal Chaos.

To test the response of paddlefish electroreceptors to different , the researchers recorded signals from electrosensory neurons of live fish, while applying weak electric fields to the water in the form of computer-generated artificial stimuli or signals obtained previously from swimming zooplankton.

The team then analyzed the power contained in different frequency ranges for the noisy input signals and the corresponding electroreceptor responses, and compared the two. In addition to finding that the paddlefish best encode the signals emitted by zooplankton, the team also found that as the strength of the was raised, the firing of the fish's sensory neurons transitioned from a steady beat to a noisy pattern of intermittent bursts.

This bursting pattern became synchronized across different groups of electroreceptors, increasing the likelihood of the signal reaching higher-order neurons. This provides a plausible mechanism to explain how reliable information about the nearness of prey is transferred to the fish's brain, the researchers write.

Explore further: Researchers help Boston Marathon organizers plan for 2014 race

More information: "Sensory Coding in Oscillatory Electroreceptors of Paddlefish" is published in Chaos: An Interdisciplinary Journal of Nonlinear Science.

Provided by American Institute of Physics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Scientists trace origin of shark’s electric sense

Feb 06, 2006

Sharks are known for their almost uncanny ability to detect electrical signals while hunting and navigating. Now researchers have traced the origin of those electrosensory powers to the same type of embryonic ...

Bursting neurons follow the same beat, sometimes

Sep 12, 2011

A simplified mathematical model of the brain's neural circuitry shows that repetitious, overlapped firing of neurons can lead to the waves of overly synchronized brain activity that may cause the halting movements that are ...

Scientists discover how best to excite brain cells

Jul 08, 2011

(Medical Xpress) -- Oh, the challenges of being a neuron, responsible for essential things like muscle contraction, gland secretion and sensitivity to touch, sound and light, yet constantly bombarded with signals from here, ...

Recommended for you

Egypt archaeologists find ancient writer's tomb

Apr 19, 2014

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Study finds law dramatically curbing need for speed

Apr 18, 2014

Almost seven years have passed since Ontario's street-racing legislation hit the books and, according to one Western researcher, it has succeeded in putting the brakes on the number of convictions and, more importantly, injuries ...

User comments : 0

More news stories

Clippers and coiners in 16th-century England

In 2017 a new £1 coin will appear in our pockets with a design extremely difficult to forge. In the mid-16th century, Elizabeth I's government came up with a series of measures to deter "divers evil persons" ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.