How work tells muscles to grow

Jan 03, 2012

We take it for granted, but the fact that our muscles grow when we work them makes them rather unique. Now, researchers have identified a key ingredient needed for that bulking up to take place. A factor produced in working muscle fibers apparently tells surrounding muscle stem cell "higher ups" that it's time to multiply and join in, according to a study in the January Cell Metabolism, a Cell Press journal.

In other words, that so-called serum response factor (Srf) translates the mechanical signal of work into a chemical one.

"This signal from the muscle fiber controls stem and participation in muscle growth," says Athanassia Sotiropoulos of Inserm in France. "It is unexpected and quite interesting." It might also lead to new ways to combat .

Sotiropoulos' team became interested in Srf's role in muscle in part because their earlier studies in mice and humans showed that Srf concentrations decline with age. That led them to think Srf might be a culprit in the muscle atrophy so common in aging.

The new findings support that view, but Srf doesn't work in the way the researchers had anticipated. Srf was known to control many other genes within muscle fibers. That Srf also influences the activities of the satellite stem cells came as a surprise.

Mice with lacking Srf are no longer able to grow when they are experimentally overloaded, the new research shows. That's because don't get the message to proliferate and fuse with those pre-existing myofibers.

Srf works through a network of genes, including one known as . That raises the intriguing possibility that commonly used Cox2 inhibitors—think ibuprofen—might work against muscle growth or recovery, Sotiropoulos notes.

Treatments designed to tweak this network of factors might be used to wake muscle stem cells up and enhance muscle growth in circumstances such as aging or following long periods of bed rest, she says. Most likely, such therapies would be more successfully directed not at Srf itself, which has varied roles, but at its targets.

"It may be difficult to find a beneficial amount of Srf," she says. "Its targets, interleukins and prostaglandins, may be easier to manipulate."

Explore further: Researchers study vital 'on/off switches' that control when bacteria turn deadly

More information: Guerci et al.: "Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy."

add to favorites email to friend print save as pdf

Related Stories

New clues about the basis of muscle wasting disease

Mar 12, 2010

New findings that shed light on how genetic damage to muscle cell proteins can lead to the development of the rare muscle-wasting disease, nemaline myopathy, are reported today (15 March) in the Biochemical Journal.

Team identifies stem cells that repair injured muscles

Mar 05, 2009

A University of Colorado at Boulder research team has identified a type of skeletal muscle stem cell that contributes to the repair of damaged muscles in mice, which could have important implications in the treatment of injured, ...

Recommended for you

Environmental pollutants make worms susceptible to cold

10 hours ago

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Interactions of Earth's smallest players have global impact

12 hours ago

A new study reveals the interactions among bacteria and viruses that prey on them thriving in oxygen minimum zones—stretches of ocean starved for oxygen that occur around the globe. Understanding such microbial ...

A new quality control pathway in the cell

Sep 18, 2014

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 0