Spotted under the microscope: How a virus puts on its armor

January 31, 2012

Scientists from VU University Amsterdam, Scripps Research Institute and the University of Michigan discovered how a virus 'puts on its armor'. This 'armor', consisting of mere proteins, is initially flexible and weak, but subsequently goes through an exceptional strengthening process. Surprisingly, the reinforcement of the virus does not occur in one, but in three, independent ways.

The researchers report their results this week in .

The scientists, led by VU University professor Gijs Wuite, used an extremely sensitive microscope, an atomic force microscope, to locate the that are only tens of nanometers in size. With this technique it was possible not only to detect the viruses, but also to test their material properties. By using a tiny needle to literally push onto the viruses, first author Wouter Roos was able to very accurately determine their mechanical resistance. During the viral maturation, a process in which the DNA is brought into the virus, the virus surprisingly uses three different mechanisms simultaneously to strengthen the .

This exceptional reinforcement is needed to survive in the outside world, where many different aggressive forces are acting on the virus. By unraveling this process, the researchers now have a clear picture of how viruses are built. This is essential in order to combat viruses and for biomedical and nanotechnological applications.

Schematic overview of the . An enlargement of the tip of the needle that scans the virus is shown at the bottom right.

Explore further: Molecular anatomy of influenza virus detailed

More information: The article Mechanics of Bacteriophage maturation is published the 30th of January 2012 in Proceedings of the National Academy of Sciences.

Related Stories

Molecular anatomy of influenza virus detailed

December 30, 2006

Scientists at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), part of the National Institutes of Health in Bethesda, Md., and colleagues at the University of Virginia in Charlottesville ...

Structure of salt lake archaeal virus solved in Finland

May 27, 2008

Researchers at the Finnish Centre of Excellence in Virus Research at University of Helsinki’s Institute of Biotechnology have solved the structure of archaeal virus SH1 to the resolution of one nanometer. The results that ...

Structure of hepatitis B virus mapped

July 28, 2008

Using a newly developed method, Utrecht University researchers have mapped the structure and composition of the hepatitis B virus. The researchers were able to map the structure by spraying the virus.

When viruses infect bacteria

June 30, 2011

(PhysOrg.com) -- Viruses are the most abundant parasites on Earth. Well known viruses, such as the flu virus, attack human hosts, while viruses such as the tobacco mosaic virus infect plant hosts.

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.