Microreactors: Improving manufacturing by going small

Jan 23, 2012 By Sarah Perrin

The invention being developed by EPFL’s Group of Catalytic Reaction Engineering (GGRC) will soon make it possible to manufacture drugs, cosmetics and household products in a safer and more efficient manner. The scientists have come up with a new kind of microreactor for industry that reinvents how chemical reactions are designed to be done on a large scale.

When perfumes, creams, shampoos and other similar products are manufactured, the chemical reactions involved typically take place in big, agitated containers called reactors. The various ingredients are mixed in the container, often along with catalysts that increase the reaction speed, while temperature, pressure and a variety of other parameters are carefully controlled. These reactors are usually quite large (several cubic meters in volume) in order to be able to produce large quantities of a product. They operate in discontinuous cycles, which means they must be stopped, emptied and cleaned before each new use.

This video is not supported by your browser at this time.

The GGRC team worked with the company Givaudan Suisse SA to rethink this process, and ended up taking a diametrically different approach – dividing up the substance into small volumes in order to produce it more efficiently. With their invention, the chemical reaction doesn’t take place in big containers, but in micro-channels, each with a diameter of a few hundred microns. Several thousand of these channels can be assembled together.

Continuous production

“The primary advantage is a much higher level of safety,” explains GGRC director Lioubov Kiwi. “Any problem or risk of explosion remains confined within a tiny volume. It’s also much easier to control the temperature and, in fact, the entire process. In addition, they function continuously, with reactants entering on one side of the micro-tubes and the final product continuously generated at the exit.”

In terms of efficiency, the new machine is advantageous because it reduces the loss of raw materials. “About 20% of raw materials, up to now wasted, can now be recuperated,” the professor explains. In addition, the size of installations can be reduced by a factor of ten. Finally, the procedure improves product quality, because there are fewer impurities and waste products produced in the procedure.

Explore further: Building the ideal rest stop for protons

Provided by Ecole Polytechnique Federale de Lausanne

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Organic chemistry: Amino acids made easy

May 04, 2011

Amino acids are the building blocks of proteins. There are 22 different amino acids and they can combine in a myriad ways to form a vast array of proteins. All amino acids except glycine are chiral molecules, ...

Metal particle generates new hope for H2 energy

Jun 28, 2011

(PhysOrg.com) -- Tiny metallic particles produced by University of Adelaide chemistry researchers are bringing new hope for the production of cheap, efficient and clean hydrogen energy.

Recommended for you

Building the ideal rest stop for protons

Jul 29, 2014

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

Jul 29, 2014

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 0