Metadynamics technique offers insight into mineral growth and dissolution

Jan 23, 2012

By using a novel technique to better understand mineral growth and dissolution, researchers at the Department of Energy's Oak Ridge National Laboratory are improving predictions of mineral reactions and laying the groundwork for applications ranging from keeping oil pipes clear to sequestering radium.

The mineral barite was examined to understand mineral growth and dissolution generally, but also because it is the dominant scale-forming mineral that precipitates in and reservoirs in the North Sea. Oil companies use a variety of compounds to inhibit scale formation, but a better understanding of how barite grows could enable them to be designed more efficiently.

Additionally, barium can trap radium in its crystal structure, so it has the potential to contain the radioactive material.

In a paper featured on this month's cover of the , the ORNL-led team studied barite growth and dissolution using metadynamics, a critical technique that allows researchers to study much slower reactions than what is normally possible.

"When a mineral is growing or dissolving, you have a hard time sorting out which are the important reactions and how they occur because there are many things that could be happening on the surface," said Andrew Stack, ORNL geochemist and lead author on the paper. "We can't determine which of many possible reactions are controlling the rate of growth."

To overcome this hurdle, ORNL Chemical Sciences Division's Stack started with molecular dynamics, which can simulate energies and structures at the . To model a mineral surface accurately, the researchers need to simulate thousands of atoms. To directly measure a slow reaction with this many atoms during mineral growth or dissolution might take years of supercomputer time. Metadynamics, which builds on molecular dynamics, is a technique to "push" reactions forward so researchers can observe them and measure how fast they are proceeding in a relatively short amount of computer time.

With the help of metadynamics, the team determined that there are multiple intermediate reactions that take place when a barium ion attaches or detaches at the mineral surface, which contradicts the previous assumption that attachment and detachment occurred all in a single reaction.

"Without metadynamics, we would never have been able to see these intermediates nor determine which ones are limiting the overall reaction rate," Stack said.

To run computer simulations of mineral growth, researchers used the Large-scale Atomic/Molecular Massively Parallel Simulator, a code developed by Sandia National Laboratories. Co-authors on the paper are the Curtin University (Australia) Nanochemistry Research Institute's Paolo Raiteri and Julian Gale.

Explore further: New, more versatile version of Geckskin: Gecko-like adhesives now useful for real world surfaces

Related Stories

New insights into the origin of life on Earth

Dec 11, 2006

In an advance toward understanding the origin of life on Earth, scientists have shown that parts of the Krebs cycle can run in reverse, producing biomolecules that could jump-start life with only sunlight and a mineral present ...

X-ray Method Images Ions at Interface

Jun 12, 2004

A team led by Northwestern University researchers at the U.S. Department of Energy’s Argonne National Laboratory have taken the guesswork out of interfacial structure determination. The researchers are the first to show th ...

Recommended for you

A greener source of polyester—cork trees

Apr 16, 2014

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.