JQI cool nano loudspeakers could makes for better MRIs, quantum computers

January 25, 2012
JQI researchers think they have discovered a way to amplify faint electrical signals using the motion of a nanomechanical membrane, or loudspeaker. If shown in experiments, the scheme could prove a boon to magnetic resonance imaging and quantum information science. This schematic of the proposed device shows its use in detecting--in this example--a signal produced by the quantum-mechanical "spin" of a group of atoms. The atoms generate a faint radiofrequency signal in a coil (L) which is connected to microscale wires that form an electrical capacitor. This vibrates the 'nanomembrane' which in turn affects the resonant frequency of a laser optical cavity. The output is light at frequency that is the sum of the original laser frequency plus the signal from the atoms. Credit: Taylor/NIST

(PhysOrg.com) -- A team of physicists from the Joint Quantum Institute (JQI), the Neils Bohr Institute in Copenhagen, Denmark, and Harvard University has developed a theory describing how to both detect weak electrical signals and cool electrical circuits using light and something very like a nanosized loudspeaker. If demonstrated through experiment, the work could have a tremendous impact on detection of low-power radio signals, magnetic resonance imaging (MRI), and the developing field of quantum information science.

The JQI is a collaborative venture of the National Institute of Standards and Technology (NIST) and the University of Maryland, College Park.

"We envision coupling a nanomechanical membrane to an electrical circuit so that an electrical signal, even if exceedingly faint, will cause the membrane to quiver slightly as a function of the strength of that signal," says JQI physicist Jake Taylor. "We can then bounce photons from a laser off that membrane and read the signal by measuring the modulation of the reflected light as it is shifted by the motion of the membrane. This leads to a change in the wavelength of the light."

Present technology for measuring the is highly sensitive, which makes it ideal for detecting the nanoscopic motions of the loudspeaker caused by extremely faint .

And the ability to detect extremely faint electrical signals may someday make MRI medical procedures much easier.

" are so big because they are stuffed with really powerful , but if we can reduce the strength of the signals we need for a reading, we can reduce the strength, and the size, of the magnets," Taylor says. "This may mean that one could get an MRI while sitting quietly in a room and forgo the tube."

The same setup could be used to generate information-carrying photons from one qubit to another, according to Taylor.

One popular quantum information system design uses light to transfer information among qubits, entangled particles that will exploit the inherent weirdness of quantum phenomena to perform certain calculations impossible for current computers. The 'nanospeaker' could be used to translate low-energy signals from a quantum processor to optical photons, where they can be detected and transmitted from one qubit to another.

All this, and the team will throw in cooling the system for free. According to their calculations, translating the mechanical motion of the little loudspeaker into photons will siphon a considerable amount of heat out of the system (from room temperature to 3 kelvin or -270 C), which in turn will reduce noise in the system and provide for better signal detection.

Explore further: Quantum electronics: Two photons and chips

More information: J. M. Taylor, A. S. Sørensen, C. M. Marcus and E. S. Polzik. Laser cooling and optical detection of excitations in a LC electrical circuit. Phys. Rev. Lett. 107, 273601. Published online Dec. 27, 2011. link.aps.org/doi/10.1103/PhysRevLett.107.273601

Related Stories

Quantum electronics: Two photons and chips

January 20, 2006

Scientists at Toshiba Research Europe Limited (Cambridge, UK) believe they are on to a way of producing entangled twins of photons using a simple semiconductor electronic device. Such a chip-based source of entangled photons ...

JQI researchers create entangled photons from quantum dots

November 18, 2009

To exploit the quantum world to the fullest, a key commodity is entanglement—the spooky, distance-defying link that can form between objects such as atoms even when they are completely shielded from one another. Now, physicists ...

Breakthrough for photons in the microwave frequency range

February 22, 2011

Photons in the microwave frequency range are important in quantum research - for quantum information processors, for example. Now, for the first time, researchers have achieved the controlled production of single photons ...

Recommended for you

New device converts DC electric field to terahertz radiation

August 4, 2015

Terahertz radiation, the no-man's land of the electromagnetic spectrum, has long stymied researchers. Optical technologies can finagle light in the shorter-wavelength visible and infrared range, while electromagnetic techniques ...

The resplendent inflexibility of the rainbow

August 4, 2015

Children often ask simple questions that make you wonder if you really understand your subject. An young acquaintance of mine named Collin wondered why the colors of the rainbow were always in the same order—red, orange, ...

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.