Researchers measure and model inhomogeneous energy landscapes in graphene

Jan 05, 2012

(PhysOrg.com) -- If graphene is to live up to its promise as a revolutionary component of future electronics, the interactions between graphene and the surrounding materials in a device must be understood and controlled.

Researchers at the NIST Center for Nanoscale Science and Technology have successfully measured and modeled how electrons in graphene respond to in an underlying substrate, explaining key differences in the response of graphene that is one versus two layers thick.

The ability of electrons to screen, or damp, the electric fields due to impurities is characterized by an electrostatic screening length. In order to screen the impurities, the screening length must be significantly shorter than the separation between the impurities. When placed on a substrate, electrons in monolayer and bilayer graphene respond differently to substrate impurities because differences in symmetry change the screening length.

For two layers of graphene, the electrons have a small screening length and therefore rearrange easily to screen the impurities. For monolayer graphene, the unusual symmetry of its two-dimensional honeycomb atomic causes the energy of the electrons to increase linearly with momentum, similar to “massless” particles such as photons.

The CNST theory shows that the screening length for massless electrons is similar to the spacing between the substrate impurities, making it much more difficult for the to rearrange. Substrate impurities cause electron scattering and thereby reduce device performance in both and bilayer graphene; by explaining the response to impurities, this work provides insight into methods to control such scattering and improve graphene device performance on a range of substrates.

Explore further: Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch

More information: Mechanism for puddle formation in graphene, S. Adam, S. Jung, N. N. Klimov, N. B. Zhitenev, J. A. Stroscio, and M. D. Stiles, Physical Review B 84, 235421 (2011). prb.aps.org/abstract/PRB/v84/i23/e235421

add to favorites email to friend print save as pdf

Related Stories

Two graphene layers may be better than one

Apr 27, 2011

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology have shown that the electronic properties of two layers of graphene vary on the nanometer scale. The surprising new results ...

Looking for critical behavior in graphene

May 18, 2010

(PhysOrg.com) -- "One of the hopes people have for graphene is in electronic devices. It is seen as a possible replacement for silicon, due to its unique properties," Herb Fertig tells PhysOrg.com. Graphe ...

Recommended for you

For electronics beyond silicon, a new contender emerges

23 hours ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

User comments : 0