Researchers measure and model inhomogeneous energy landscapes in graphene

January 5, 2012

(PhysOrg.com) -- If graphene is to live up to its promise as a revolutionary component of future electronics, the interactions between graphene and the surrounding materials in a device must be understood and controlled.

Researchers at the NIST Center for Nanoscale Science and Technology have successfully measured and modeled how electrons in graphene respond to in an underlying substrate, explaining key differences in the response of graphene that is one versus two layers thick.

The ability of electrons to screen, or damp, the electric fields due to impurities is characterized by an electrostatic screening length. In order to screen the impurities, the screening length must be significantly shorter than the separation between the impurities. When placed on a substrate, electrons in monolayer and bilayer graphene respond differently to substrate impurities because differences in symmetry change the screening length.

For two layers of graphene, the electrons have a small screening length and therefore rearrange easily to screen the impurities. For monolayer graphene, the unusual symmetry of its two-dimensional honeycomb atomic causes the energy of the electrons to increase linearly with momentum, similar to “massless” particles such as photons.

The CNST theory shows that the screening length for massless electrons is similar to the spacing between the substrate impurities, making it much more difficult for the to rearrange. Substrate impurities cause electron scattering and thereby reduce device performance in both and bilayer graphene; by explaining the response to impurities, this work provides insight into methods to control such scattering and improve graphene device performance on a range of substrates.

Explore further: Looking for critical behavior in graphene

More information: Mechanism for puddle formation in graphene, S. Adam, S. Jung, N. N. Klimov, N. B. Zhitenev, J. A. Stroscio, and M. D. Stiles, Physical Review B 84, 235421 (2011). prb.aps.org/abstract/PRB/v84/i23/e235421

Related Stories

Looking for critical behavior in graphene

May 18, 2010

(PhysOrg.com) -- "One of the hopes people have for graphene is in electronic devices. It is seen as a possible replacement for silicon, due to its unique properties," Herb Fertig tells PhysOrg.com. Graphene conducts well, ...

Two graphene layers may be better than one

April 27, 2011

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology have shown that the electronic properties of two layers of graphene vary on the nanometer scale. The surprising new results reveal that not ...

Bilayer graphene is another step toward graphene electronics

August 11, 2011

The Nobel Prize winning scientists Professor Andre Geim and Professor Kostya Novoselov have taken a huge step forward in studying the wonder material graphene and revealing its exciting electronic properties for future electronic ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.