The future of Fermilab

Jan 31, 2012

In this month's Physics World, reviews and careers editor, Margaret Harris, visits the Fermi National Accelerator Laboratory (Fermilab) to explore what future projects are in the pipeline now that the Tevatron particle accelerator has closed for good.

After 28 years of ground-breaking discoveries, the has finally surrendered to the mighty Large Hadron Collider (LHC) at , placing , in some people's mind, on the brink of disappearing into obscurity.

The lab appears to be moving into a new frontier, however, with several other projects ready to step out of the shadow of the Tevatron and excel in many more areas of science. The excitement amongst the researchers working at the Chicago-based lab over the new developments is clearly conveyed in this feature.

Fermilab can no longer compete with the when it comes to smashing particles together at high energies, but it can look for rare interactions between particles at lower energies. In this type of experiment, the key is not a beam's energy but its intensity: the number of particles produced per second.

Their plans include two experiments – one already being built and another in the pipeline – that will send beams of neutrinos underground to distant detectors to see how these particles change between one form and another.

More ambitious still is Project X – expected to cost between $1-2bn – which will provide intense beams of protons for experiments on neutrinos, rare decays and heavy nuclei. Outside of high-energy physics, the lab currently participates in experiments into cosmic rays, dark matter and dark energy.

One obstacle that stands in the way of Fermilab's progression is money. With the US Congress's budgetary process – which allocates funds one year at a time – threatening to delay projects, combined with the current economic downturn, there is cause for concern, especially for a lab currently in transition.

"This is an opportunity for the US to establish a leadership position in this very important area of physics that will last for decades," said Fermilab physicist Steve Holmes. "If we do it right, we'll just blow away the competition."

Also in this issue:

Science in the UK did well to avoid major cuts in the last government spending round, but John Womersley, chief executive of the Science and Technology Facilities Council, says the research community needs to safeguard its own future.

Explore further: Finding faster-than-light particles by weighing them

More information: physicsworld.com/

add to favorites email to friend print save as pdf

Related Stories

Tevatron atom smasher to close in September

Jan 11, 2011

(PhysOrg.com) -- The 25-year-old Tevatron particle accelerator in the US will end its operations in September this year since no funds are available to extend its life for three more years.

Rare particle decay could mean new physics

Aug 23, 2011

(PhysOrg.com) -- An incredibly rare sub-atomic particle decay might not be quite as rare as previously predicted, say Cornell researchers. This discovery, culled from a vast data set at the Collider Detector at Fermilab (CDF), ...

Shutdown looms at pioneering American atom smasher

Sep 28, 2011

(AP) -- Aside from the slogan on the water tower that reads "City of Energy," there is little in this leafy Chicago suburb of gently rolling hills to indicate that it has been the center of the universe when ...

Recommended for you

Finding faster-than-light particles by weighing them

2 minutes ago

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guideĀ to support physicists participating in radiation dosimetry audits.

Acoustic tweezers manipulate cell-to-cell contact

Dec 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.