The future of Fermilab

Jan 31, 2012

In this month's Physics World, reviews and careers editor, Margaret Harris, visits the Fermi National Accelerator Laboratory (Fermilab) to explore what future projects are in the pipeline now that the Tevatron particle accelerator has closed for good.

After 28 years of ground-breaking discoveries, the has finally surrendered to the mighty Large Hadron Collider (LHC) at , placing , in some people's mind, on the brink of disappearing into obscurity.

The lab appears to be moving into a new frontier, however, with several other projects ready to step out of the shadow of the Tevatron and excel in many more areas of science. The excitement amongst the researchers working at the Chicago-based lab over the new developments is clearly conveyed in this feature.

Fermilab can no longer compete with the when it comes to smashing particles together at high energies, but it can look for rare interactions between particles at lower energies. In this type of experiment, the key is not a beam's energy but its intensity: the number of particles produced per second.

Their plans include two experiments – one already being built and another in the pipeline – that will send beams of neutrinos underground to distant detectors to see how these particles change between one form and another.

More ambitious still is Project X – expected to cost between $1-2bn – which will provide intense beams of protons for experiments on neutrinos, rare decays and heavy nuclei. Outside of high-energy physics, the lab currently participates in experiments into cosmic rays, dark matter and dark energy.

One obstacle that stands in the way of Fermilab's progression is money. With the US Congress's budgetary process – which allocates funds one year at a time – threatening to delay projects, combined with the current economic downturn, there is cause for concern, especially for a lab currently in transition.

"This is an opportunity for the US to establish a leadership position in this very important area of physics that will last for decades," said Fermilab physicist Steve Holmes. "If we do it right, we'll just blow away the competition."

Also in this issue:

Science in the UK did well to avoid major cuts in the last government spending round, but John Womersley, chief executive of the Science and Technology Facilities Council, says the research community needs to safeguard its own future.

Explore further: The unifying framework of symmetry reveals properties of a broad range of physical systems

More information: physicsworld.com/

add to favorites email to friend print save as pdf

Related Stories

Tevatron atom smasher to close in September

Jan 11, 2011

(PhysOrg.com) -- The 25-year-old Tevatron particle accelerator in the US will end its operations in September this year since no funds are available to extend its life for three more years.

Rare particle decay could mean new physics

Aug 23, 2011

(PhysOrg.com) -- An incredibly rare sub-atomic particle decay might not be quite as rare as previously predicted, say Cornell researchers. This discovery, culled from a vast data set at the Collider Detector at Fermilab (CDF), ...

Shutdown looms at pioneering American atom smasher

Sep 28, 2011

(AP) -- Aside from the slogan on the water tower that reads "City of Energy," there is little in this leafy Chicago suburb of gently rolling hills to indicate that it has been the center of the universe when ...

Recommended for you

What time is it in the universe?

Aug 29, 2014

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0