Flaky graphene makes reliable chemical sensors

Jan 17, 2012

Scientists from the University of Illinois at Urbana-Champaign and the company Dioxide Materials have demonstrated that randomly stacked graphene flakes can make an effective chemical sensor.

The researchers created the one-atom-thick carbon lattice flakes by placing bulk graphite in a solution and bombarding it with that broke off thin sheets. The researchers then filtered the solution to produce a graphene film, composed of a haphazard arrangement of stacked flakes, that they used as the top layer of a chemical sensor. When the graphene was exposed to test chemicals that altered the surface chemistry of the film, the subsequent movement of electrons through the film produced an electrical signal that flagged the presence of the chemical.

The researchers experimented by adjusting the volume of the filtered solution to make thicker or thinner films. They found that thin films of randomly stacked graphene could more reliably detect trace amounts of test chemicals than previously designed sensors made from carbon nanotubes or graphene crystals.

The results are accepted for publication in the AIP's journal .

The researchers theorize that the improved sensitivity is due to the fact that defects in the carbon-lattice structure near the edge of the graphene flakes allow electrons to easily "hop" through the film.

Explore further: Demystifying nanocrystal solar cells

More information: Amin Salehi-Khojin et al. "Chemical Sensors Based On Randomly Stacked Graphene Flakes", accepted for publication in Applied Physics Letters.

add to favorites email to friend print save as pdf

Related Stories

Liquid method: pure graphene production

May 30, 2010

In a development that could lead to novel carbon composites and touch-screen displays, researchers from Rice University and the Technion-Israel Institute of Technology today unveiled a new method for producing ...

Giant flakes make graphene oxide gel

Oct 20, 2011

(PhysOrg.com) -- Giant flakes of graphene oxide in water aggregate like a stack of pancakes, but infinitely thinner, and in the process gain characteristics that materials scientists may find delicious.

Recommended for you

Demystifying nanocrystal solar cells

14 hours ago

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.