Fine, jagged ash increased Eyjafjallajokull volcano's influence

Jan 31, 2012

The 2010 eruption of Eyjafjallajökull volcano was not a large event. Over months of volcanic activity the ash plume never pushed above 10 kilometers (6.2 miles), and the mass flows peaked at 1 million kilograms per second (2.2 million pounds per second), feeble amounts compared to some other volcanic eruptions. In total, the volcano spewed out only 270 million cubic meters (353 million cubic yards) of ash-a single day's activity for some eruptions. By any conventional measure, Eyjafjallajökull lacked power. Yet the eruption had a powerful effect on society, leaving tens of thousands of people stranded as air traffic around Western Europe was shut down.

The eruption's widespread influence was due to the unusually large distribution and high residency time of volcanic ash particles. By analyzing ash samples collected across Iceland, Dellino et al. show how the eruptive mechanisms acting at the vent, and thus the ash's small-scale properties, changed throughout the eruption. A simple computer simulation let the authors estimate an ash grain's drag and terminal velocity, and hence residency time, from measurements of small-scale properties.

The authors find that upwelling magma reacted with water from a nearby glacier, and the rapid cooling caused it to contract and fragment into fine, irregularly shaped ash. Near the end of the eruption, equally fine ash was produced when small gas bubbles trapped in the magma expanded as the molten rock neared the surface. From their collected samples, the authors find that the median diameter of the ash grains is 1 millimeter (0.04 inches). Starting 10 km (6.2 miles) from the volcano's vent, particles smaller than 16 micrometers became an important portion of the mix. The authors argue that the violent fragmentation processes caused jagged and porous ash grains. These aspherical aberrations increased the grains' time aloft and, according to the authors, explain how a small eruption inconvenienced such a large area.

Explore further: NASA balloons begin flying in Antarctica for 2014 campaign

More information: Ash from the Eyjafjallajökull eruption (Iceland): Fragmentation processes and aerodynamic behavior, P. Dellino and D. Mele, Journal of Geophysical Research-Solid Earth, Doi:10.1029/2011JB008726 , 2012.

add to favorites email to friend print save as pdf

Related Stories

New eruption could be looming in Iceland, experts warn

Nov 01, 2010

An Icelandic volcano has shown signs it could be about to burst into life, just months after an eruption from another volcano caused Europe's biggest air shutdown since World War II, experts said Monday.

Icelandic volcano flings up ash, shuts airport

May 22, 2011

(AP) -- Iceland closed its main international airport and canceled all domestic flights Sunday as a powerful volcanic eruption sent a plume of ash, smoke and steam 12 miles (20 kilometers) into the air.

New satellite image of volcanic ash cloud

Apr 15, 2010

This image, acquired today by ESA's Envisat satellite, shows the vast cloud of volcanic ash sweeping across the UK from the eruption in Iceland, more than 1000 km away.

Recommended for you

Scientists make strides in tsunami warning since 2004

Dec 19, 2014

The 2004 tsunami led to greater global cooperation and improved techniques for detecting waves that could reach faraway shores, even though scientists still cannot predict when an earthquake will strike.

Trade winds ventilate the tropical oceans

Dec 19, 2014

Long-term observations indicate that the oxygen minimum zones in the tropical oceans have expanded in recent decades. The reason is still unknown. Now scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.