Examining evolution from a cellular perspective

January 25, 2012

The evolutionary processes of unicellular and multicellular organisms are continually under debate. John Torday, Ph.D., a lead investigator at Los Angeles Biomedical Research Institute (LA BioMed), has recently co-authored a book entitled Evolutionary Biology, Cell-Cell Communication and Complex Disease, which incorporates cell biology into evolutionary biology. Rather than focusing on multicellular organisms, the book concentrates on the cell as the smallest unit of biologic structure and function. This is the first time that evolution has been looked at from the cellular mechanistic perspective, making evolution more accessible and relevant to all of biology and medicine.

According to Dr. Torday, "Understanding evolutionary biology is key to integrating biology. To accomplish this, we need a mechanism for the process of Natural Selection that explains how novelty in is generated, how selection pressure has made wings from limbs, lungs from swim bladders, and integrated physiologic regulatory mechanisms like and respiration, photoreception and , water balance and erythropoiesis," said Dr. Torday. "Evolutionary-developmental biology provides an opportunity to exploit contemporary cell-molecular developmental biology, yet it has not been used effectively because we don't have an algorithm to convert genes into phenotypes. That leaves a huge gap in evolutionary biology that must be filled to provide plausible answers for how evolution has generated physiologic phenotypes. Since cells generate phenotypes from genes, this is a logical way to understanding evolution that's been 'trumped' by our zeal to reduce everything in biology to genes. Evolution, like , is a process, not a thing."

Evolutionary Biology, Cell-Cell Communication and Complex Disease is focused on the scientific evidence that unicellular organisms are the origins of metazoans, and that metabolic cellular cooperativity is the central being selected for. By examining the Gene Regulatory Networks (GRNs) that mediate these processes, the mechanisms underlying the evolution of a particular group of organisms (phylogeny) using the developmental history of an individual organism (ontogeny) can be leveraged, and visa versa, filling in the missing links using a mathematical algorithm like the Periodic Table.

The power of this novel approach is exemplified by focusing on GRNs that mediate cell-cell communication common to both ontogeny and phylogeny (independent of time), merging them into one common data set to determine the ultimate physiologic principles. The concept of cell-cell communication spans all of biology, from its initial conditions to preventive medicine. Evolutionary Biology will clarify this perspective, providing insights to experimental evolution.

In addition to being a lead investigator at LA BioMed, Dr. Torday is a Professor of Pediatrics and Obstetrics/Gynecology at the David Geffen School of Medicine at UCLA. He is a pioneer in the field of developmental lung biology, with current research interests in the developmental/phylogenetic origins of lung cell phenotypic heterogeneity and the gene regulatory network determinants of lung evolution. He is particularly interested in using of the lung as an approach to clinical diagnosis and treatment of chronic lung disease, and as a prototype for predictive and preventive medicine.

Explore further: Bodily breakdown explained: How cell differentiation patterns suppress somatic evolution

Related Stories

'Evolution: A Developmental Approach'

January 27, 2011

What separates humans from Chimpanzees? Is it the genetics of our population, or our different structures and behavior capabilities? To Professor Wallace Arthur it is all of these points, which is why his latest book Evolution: ...

Evolution of the evolutionarily minded

July 19, 2011

In the century and a half since Charles Darwin's publication of The Origin of Species, evolutionary theory has become the bedrock of modern biology, yet its application to the understanding of the human mind remains controversial. ...

Recommended for you

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(Phys.org)—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...

Trap-jaw ants exhibit previously unseen jumping behavior

December 1, 2015

A species of trap-jaw ant has been found to exhibit a previously unseen jumping behavior, using its legs rather than its powerful jaws. The discovery makes this species, Odontomachus rixosus, the only species of ant that ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.