Eureka! Kitchen gadget inspires scientist to make more effective plastic electronics

Jan 27, 2012
This is a cross-section of an organic transistor with vacuum-applied polymer insulator. Credit: H. T. Yi, et. al., Rutgers University

One day in 2010, Rutgers physicist Vitaly Podzorov watched a store employee showcase a kitchen gadget that vacuum-seals food in plastic. The demo stuck with him. The simple concept – an airtight seal around pieces of food – just might apply to his research: developing flexible electronics using lightweight organic semiconductors for products such as video displays or solar cells.

"Organic transistors, which switch or amplify electronic signals, hold promise for making video displays that bend like book pages or roll and unroll like posters," said Podzorov. But traditional methods of fabricating a part of the transistor known as the gate insulator often end up damaging the transistor's delicate semiconductor crystals.

Drawing inspiration from the food-storage gadget, Podzorov and his colleagues tried an experiment. They suspended a thin polymer membrane above the organic crystal and created a vacuum underneath, causing the membrane to collapse gently and evenly onto the crystal's surface. The result: a smooth, defect-free interface between the organic semiconductor and the gate insulator.

The researchers reported their success in the journal Advanced Materials. In the article, Podzorov and three colleagues describe how a single-crystal organic field effect transistor (OFET) made with this thin polymer gate insulator boosted electrical performance. The researchers further reported that they could remove and reapply membranes to the same crystal several times without degrading its surface.

This image shows fabricating single crystal organic field-effect transistors using ultra-thin polymer membrane for a gate insulator. In the upper row, the membrane is stretched over the transistor before vacuum is applied. In the lower row, the vacuum has been applied and the membrane is adhering to the organic crystal. Photos on the right are close-up views of the transistor, with the organic semiconductor crystal in red. Credit: H. T. Yi, et. al., Rutgers University

Organic transistors electrically resemble silicon transistors in computer chips, but they are made of flexible carbon-based molecules that can be printed on sheets of plastic. Silicon transistors are made in rigid, brittle wafers of silicon.

The methods that scientists previously applied to organic transistor fabrication were based on silicon semiconductor processing, explained Podzorov, assistant professor in the Department of Physics and Astronomy, School of Arts and Sciences. These involved high temperatures, high-energy plasmas or chemical reactions, all of which could damage the delicate organic crystal surface and hinder the transistor's performance.

"People have tendencies to go with something they've known for a long time," he said. "In this case, it doesn't work right."

Podzorov's innovation builds upon a decade of Rutgers research in this field, including his invention of the first single crystal organic transistor in 2003. While his latest innovation is still a ways from commercial reality, he sees an immediate application in the classroom.

"Our technique takes 10 minutes," he said. "It should be exciting for students to actually build these devices and immediately see them work, all within one lab session."

Podzorov was actually trying to solve another problem when he first recalled the food packaging demo. He was thinking about how to protect organic crystals from airborne impurities when his lab shipped samples to collaborating scientists in California and overseas.

"We could place our samples between plastic sheets and pull a vacuum," he said. "Then I thought, 'why don't we try doing this for our gate insulator?'"

Explore further: New terahertz device could strengthen security

Related Stories

Organic chips - not just in your kitchen anymore

Feb 22, 2011

(PhysOrg.com) -- IMEC researchers at the International Solid-State Circuits Conference, in San Francisco, California are expected to introduce a microprocessor made with organic semiconductors.

Organic flash memory developed

Dec 17, 2009

(PhysOrg.com) -- Researchers at the University of Tokyo have developed a non-volatile memory that has the same basic structure as a flash memory but is made from cheap, flexible, organic materials.

Recommended for you

How the hummingbird achieves its aerobatic feats

1 hour ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Eikka
not rated yet Jan 28, 2012
James Burke should pick this up for the next round of Connections.
Noumenon
1 / 5 (2) Jan 29, 2012
Ya, I liked that show.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.