A new way to measure Earth's magnetosphere

January 4, 2012

US researchers have demonstrated the potential use of a new way to measure properties of Earth's magnetosphere, the magnetic bubble that surrounds the planet.

Zhai et al. used a property known as Faraday rotation for radio tomographic imaging of the magnetosphere.

Faraday rotation occurs when a linearly polarized travels through a magnetized medium such as the magnetosphere. The magnetic field causes the plane of polarization to rotate, and the amount of rotation is directly proportional to the electron density in the medium and to the magnetic field. Therefore, because Earth's magnetic field is known, researchers can use measurements of Faraday rotation to reconstruct electron density in the magnetosphere.

Using receivers on the Wind spacecraft, the researchers measured the polarization of transmitted by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. They used the polarization data to reconstruct a two-dimensional electron density image of Earth's magnetosphere in the north polar region.

The researchers find that the electron density determined by this method agrees well with empirical models of . Such measurements could lead to improved understanding of large-scale processes in the magnetosphere.

Explore further: Cluster spacecraft reach greatest separation at fifth anniversary

More information: Magnetospheric radio tomographic imaging with IMAGE and Wind, Journal of Geophysical Research-Space Physics, doi:10.1029/2011JA016743 , 2011

Abstract
Recent theoretical studies have shown the feasibility and potential scientific value of radio tomographic imaging of Earth's magnetosphere by measuring Faraday rotation and phase difference (or group delay) of coherent radio wave signals. On 15 August 2000, a 6 W linearly polarized 828 kHz signal transmitted by the Radio Plasma Imager (RPI) on the IMAGE spacecraft was clearly detected by WAVES X and Z antennas on Wind spacecraft. Following our previous analysis of the path-integrated product change of the magnetic field and plasma density based on the spin rate measurement, we report here Faraday rotation measured from absolute antenna orientation using the phase difference between the spin-phase modeled RPI signal and the WAVES X- and Z-antenna received RPI signals. The new approach gives Faraday rotation without the mod (π) ambiguity. The average electron density extracted along a typical signal propagation path over a 1 hour measurement window agrees well with empirical models of the northern polar region derived from years of measurements. Finally, we demonstrate preliminary 2-D radio tomographic imaging of magnetospheric plasma density using the Faraday rotation measurement.

Related Stories

Geomagnetic storm subsiding

April 14, 2011

A geomagnetic storm that sparked auroras around the Arctic Circle and sent Northern Lights spilling over the Canadian border into the United States on April 12, 2011 is subsiding. NOAA forecasters estimate a 25% chance of ...

Recommended for you

Ice sheets may be more resilient than thought

September 3, 2015

Sea level rise poses one of the biggest threats to human systems in a globally warming world, potentially causing trillions of dollars' worth of damages to flooded cities around the world. As surface temperatures rise, ice ...

Clues from ancient Maya reveal lasting impact on environment

September 3, 2015

Evidence from the tropical lowlands of Central America reveals how Maya activity more than 2,000 years ago not only contributed to the decline of their environment but continues to influence today's environmental conditions, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

vidyunmaya
1 / 5 (2) Jan 05, 2012
Very interesting . More information will be useful that can link
Plasma regulated Electromagnetic phenomena in magnetic field Environment.Cosmology vedas Interlinks-Vidyardhi Nanduri

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.