A new way to measure Earth's magnetosphere

Jan 04, 2012

US researchers have demonstrated the potential use of a new way to measure properties of Earth's magnetosphere, the magnetic bubble that surrounds the planet.

Zhai et al. used a property known as Faraday rotation for radio tomographic imaging of the magnetosphere.

Faraday rotation occurs when a linearly polarized travels through a magnetized medium such as the magnetosphere. The magnetic field causes the plane of polarization to rotate, and the amount of rotation is directly proportional to the electron density in the medium and to the magnetic field. Therefore, because Earth's magnetic field is known, researchers can use measurements of Faraday rotation to reconstruct electron density in the magnetosphere.

Using receivers on the Wind spacecraft, the researchers measured the polarization of transmitted by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. They used the polarization data to reconstruct a two-dimensional electron density image of Earth's magnetosphere in the north polar region.

The researchers find that the electron density determined by this method agrees well with empirical models of . Such measurements could lead to improved understanding of large-scale processes in the magnetosphere.

Explore further: Magnitude-7.2 earthquake shakes Mexican capital

More information: Magnetospheric radio tomographic imaging with IMAGE and Wind, Journal of Geophysical Research-Space Physics, doi:10.1029/2011JA016743 , 2011

Abstract
Recent theoretical studies have shown the feasibility and potential scientific value of radio tomographic imaging of Earth's magnetosphere by measuring Faraday rotation and phase difference (or group delay) of coherent radio wave signals. On 15 August 2000, a 6 W linearly polarized 828 kHz signal transmitted by the Radio Plasma Imager (RPI) on the IMAGE spacecraft was clearly detected by WAVES X and Z antennas on Wind spacecraft. Following our previous analysis of the path-integrated product change of the magnetic field and plasma density based on the spin rate measurement, we report here Faraday rotation measured from absolute antenna orientation using the phase difference between the spin-phase modeled RPI signal and the WAVES X- and Z-antenna received RPI signals. The new approach gives Faraday rotation without the mod (π) ambiguity. The average electron density extracted along a typical signal propagation path over a 1 hour measurement window agrees well with empirical models of the northern polar region derived from years of measurements. Finally, we demonstrate preliminary 2-D radio tomographic imaging of magnetospheric plasma density using the Faraday rotation measurement.

add to favorites email to friend print save as pdf

Related Stories

Geomagnetic storm subsiding

Apr 14, 2011

A geomagnetic storm that sparked auroras around the Arctic Circle and sent Northern Lights spilling over the Canadian border into the United States on April 12, 2011 is subsiding. NOAA forecasters estimate ...

Recommended for you

Magnitude-7.2 earthquake shakes Mexican capital

Apr 18, 2014

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

vidyunmaya
1 / 5 (2) Jan 05, 2012
Very interesting . More information will be useful that can link
Plasma regulated Electromagnetic phenomena in magnetic field Environment.Cosmology vedas Interlinks-Vidyardhi Nanduri

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.