Light makes write for DNA information-storage device

January 5, 2012

Researchers have demonstrated a write-once-read-many-times information-storage device, made of DNA embedded with silver nanoparticles, that uses ultraviolet light to encode data.

In an effort to make data storage more cost-effective, a group of researchers from National Tsing Hua University in Taiwan and the Karlsruhe Institute of Technology in Germany have created a DNA-based that is "write-once-read-many-times" (WORM), and that uses ultraviolet (UV) light to make it possible to encode information.

The device, described in a paper accepted to the AIP's , consists of a thin film of salmon DNA that has been embedded with and then sandwiched between two electrodes. Shining UV light on the system enables a light-triggered synthesis process that causes the silver atoms to cluster into nano-sized particles, and readies the system for data encoding. In some cases, using DNA may be less expensive to process into memory devices than using traditional, like silicon, the researchers say.

At first, when no voltage or low voltage is applied through the electrodes to the UV-irradiated DNA, only a low current is able to pass through the composite; this corresponds to the "off" state of the device. But the UV irradiation makes the composite unable to hold charge under a high electric field, so when the applied voltage exceeds a certain threshold, an increased amount of charge is able to pass through. This higher state of corresponds to the "on" state of the device.

The team found that this change from low conductivity ("off") to high conductivity ("on") was irreversible: once the system had been turned on, it stayed on, no matter what voltage the team applied to the system. And once information is written, the device appears to retain that information indefinitely: the researchers report that the material's conductivity did not change significantly during nearly 30 hours of tracking. The authors hope the technique will be useful in the design of optical storage devices and suggest that it may have plasmonic applications as well.

Explore further: Plant virus used to create memory device

More information: "Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite" is published in Applied Physics Letters.

Related Stories

Organic flash memory developed

December 17, 2009

(PhysOrg.com) -- Researchers at the University of Tokyo have developed a non-volatile memory that has the same basic structure as a flash memory but is made from cheap, flexible, organic materials.

Organic ternary data storage device developed

April 14, 2010

(PhysOrg.com) -- The memory capacity of electronics devices could be increased in future thanks to an organic data storage system using ternary rather than binary data storage. The current prototype is designed for permanent ...

Magnetic memories manipulated by voltage, not heat

August 29, 2011

In their search for smaller, faster information-storage devices, physicists have been exploring ways to encode magnetic data using electric fields. One advantage of this voltage-induced magnet control is that less power is ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.