New discoveries in cell aging

Jan 23, 2012

A group of researchers led by the Institute of Biotechnology and Biomedicine (IBB) and Universitat Autònoma de Barcelona (UAB) have achieved to quantify with precision the effect of protein aggregation on cell aging processes using as models the Escherichia coli bacteria and the molecule which triggers Alzheimer's disease. Scientists demonstrated that the effect can be predicted before it occurs. Protein aggregation is related to several diseases, including neurodegenerative diseases.

The research, published recently in the Journal of Molecular Biology, provides an extremely reliable system with which to model and quantify the effect of protein aggregation on the viability, division and aging of cells. It also aids in further understanding the natural evolution of proteins. According to Salvador Ventura, researcher at IBB and director of the research project, "it will serve to develop computer approximations to predict the effects aggregation has on cell aging, as well as to search for molecules that act as natural chaperones, highly conserved proteins which are present also in humans and which have the ability to reduce this effect in the bacteria".

Although it is widely accepted that bad folding and aggregation of proteins reduces the cell's ability to survive and reproduce, the damage caused had not been previously measured experimentally as precisely as it was in this research.

In previous studies scientists had verified that the expression of the Alzheimer's AB42 peptide in bacteria induces the process of protein aggregation. Now they have demonstrated that this effect is coded in the protein aggregation sequence and that it depends on intrinsic properties, not on a direct response from within the cell. This makes it possible to predict the effect. Scientists also demonstrated that damage caused to the bacteria is controlled by molecular chaperones, which reduce the tendency of proteins to aggregate and favour cell survival.

In addition to researchers from IBB and the UAB Department of Biochemistry and Molecular Biology, participating in the project were scientists from the Biophysics Unit at CSIC-UPV, the University of the Basque Country, the Institute for Bioengineering of Catalonia and the Barcelona Centre for International Health Research.

Explore further: Fighting bacteria—with viruses

add to favorites email to friend print save as pdf

Related Stories

Tiny roundworm points to big promise

Jan 06, 2012

Two related studies from Northwestern University offer new strategies for tackling the challenges of preventing and treating diseases of protein folding, such as Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic ...

Neurodegeneration 'clumping proteins' common in aging process

Aug 10, 2010

Many proteins that form insoluble clumps in the brains of people with Alzheimer's and other neurodegenerative diseases are also found in healthy individuals and clump together as a normal part of aging. According to a surprising ...

Alzheimer's brains found to have lower levels of key protein

Sep 01, 2011

Researchers have found that a protein variation linked by some genetic studies to Alzheimer's disease is consistently present in the brains of people with Alzheimer's. In further biochemical and cell culture investigations, ...

Recommended for you

Fighting bacteria—with viruses

15 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

15 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0