Researchers discover a compound that controls Listeria

Jan 04, 2012 By Krishna Ramanujan
This image shows Listeria monocytogenes (green) infecting Chinook Salmon embryo cells (red). Image: M. Wiedmann and M. Roma

In a year when cantaloupe tainted with the bacterium Listeria monocytogenes killed 30 people, the discovery of a compound that controls this deadly bacteria -- and possibly others -- is great news.

Cornell researchers have identified a compound called fluoro-phenyl-styrene-sulfonamide (FPSS) that is safe for mammals but stops Listeria in its tracks. It interrupts a mechanism that controls genes that are expressed when the bacterium experiences a rapid change in its environment.

The discovery, reported in the November/December issue of mBio, a journal of the American Society for Microbiology, offers new directions for basic research on how L. monocytogenes and other bacteria survive in a wide range of rapidly changing hostile conditions, from fluctuating temperatures to the low found in the human stomach. Also, there is a strong possibility that FPSS eventually may be developed as a drug to combat listeriosis and other bacterial infections.

"This is absolutely the most exciting work in my career to date," said Kathryn Boor, Cornell professor of food science, the Ronald P. Lynch Dean of Agriculture and Life Sciences and the paper's senior author. Mary Elizabeth Palmer, Ph.D. '09, a former graduate student in Boor's lab and now at Vitamin Research Products in Carson City, Nev., is the lead author.

For a to infect a human, it must be able to survive rapid changes in its environment, ranging from cold of refrigeration and heat from cooking to highly acidic stomach conditions and osmotic and anaerobic states found in the . To do so, L. monocytogenes and certain other bacteria employ a "stress-responsive alternative sigma factor" called sigma B, which controls more than 150 genes, including those that contribute to virulence and survival in host-associated , including genes essential for the bacteria to cross the , according to the study.

"We were the first to characterize sigma B in L. monocytogenes," said Boor. "It's the linchpin in the transition of this organism from a harmless environmental microbe to a human pathogen. It allows these single-celled pathogens to survive environmental assaults associated with transmission in foods, followed by transit in the human body."

Once they identified sigma B, Boor and colleagues looked for compounds that might prevent its function.

By robotically screening 57,000 natural and synthetic small compounds from sets of libraries at the Broad Institute of Harvard and the Massachusetts Institute of Technology, the researchers initially found 41 small compounds that inhibited sigma B. Of those, FSPP was found to be nontoxic to mammalian cells and inhibited sigma B in both L. monocytogenes and Bacillus subtilis (a soil bacteria and food contaminant that survives high heat).

"This is a newly emerging approach in the search for antibiotics that are not dangerous to mammals but stop such pathogens as , and could be a possible treatment against other organisms," Boor added.

She said that more research is needed to better understand how FSPP controls sigma B activity and whether the compound affects the same mechanism in such pathogens as B. cereus (foodborne illness), Staphylococcus aureus (cause of acne and pneumonia) and Bacillus anthracis (anthrax).

Co-authors include Soraya Chaturongakul, Ph.D. '07, now a lecturer at Mahidol University, Bangkok, Thailand, and Martin Wiedmann, a Cornell professor of food science.

Explore further: Top Japan lab dismisses ground-breaking stem cell study

Related Stories

Scientists advance understanding of food pathogen

Jan 12, 2011

Listeria is an opportunistic pathogen that causes brain infection, blood poisoning, abortion and death for about 500 Americans and a number of farm animals each year. But while its harmful strains can be more lethal than ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Jan 04, 2012
Hydrogen peroxide is deadly to all bacteria, protozoa, and fungi with no known species of monads able to develop a resistance to it. It is easily rinsed off of food, and is not toxic to humans except in extreme concentrations and doses, although moderate concentrations and doses can induce vomiting.
Many people use it for sanitizing the mouth in a mouthwash or toothpaste form.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.