C60 SIMS FTICR MS raises bar for mass accuracy, resolving power

Jan 11, 2012
C60 SIMS FTICR MS, a research first, is featured on the cover of the December 15 issue of Analytical Chemistry.

In biology, what molecules are located where dictates much about how any biological system functions.

A new high-resolution developed by EMSL users now allows the biological research community to identify and map the location of biomolecules on a sample with higher mass accuracy and mass resolving power than ever before. Because with very different functions can have almost identical masses, this holistic analysis will open new doors in biological research and offer scientists unique insights into biological systems and how they work.

Called C60 SIMS FTICR MS, the new tool couples C60 (also called , or )  secondary ion mass spectrometry, which has high spatial resolution chemical imaging capabilities and minimizes damage to biological samples during analysis, with high-magnetic field (9.4 or 12 Tesla) Fourier transform ion cyclotron resonance mass spectrometry, which has impressive mass spectral performance.

Featured on the cover of the December 15, 2011 issue of Analytical Chemistry, the team demonstrated the potential of C60 SIMS FTICR MS using mouse brain tissue. They achieved mass accuracy and mass resolving power 10 times higher than previously reported for SIMS. A solid and exciting first step for the biological research community, optimizations for the system are already underway and include achieving sub-micrometer resolution and building advanced data handling and analysis tools.

Explore further: Detecting infection with a microchip

More information: Smith DF, EW Robinson, AV Tolmachev, RMA Heeren, and L Pasa-Tolic. 2011. “C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.” Analytical Chemistry 83:9552-9556.

add to favorites email to friend print save as pdf

Related Stories

3D View of the Brain

Jan 12, 2010

(PhysOrg.com) -- A completely new view of the brains of mice has been achieved by a team headed by R. Graham Cooks at Purdue University (West Lafayette, Indiana, USA). By using mass-spectrometric techniques and imaging processes, ...

Carnegie Mellon scientist to build unique mass spectrometer

Jan 11, 2006

Carnegie Mellon University's Mark Bier has received a $546,000 grant from the National Science Foundation's Instrument Development for Biological Research program to build a heavy-ion mass spectrometer. This one-of-a-kind ...

Recommended for you

A greener source of polyester—cork trees

22 hours ago

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

User comments : 0

More news stories

Breakthrough points to new drugs from nature

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

A greener source of polyester—cork trees

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

Net neutrality balancing act

Researchers in Italy, writing in the International Journal of Technology, Policy and Management have demonstrated that net neutrality benefits content creator and consumers without compromising provider innovation nor pr ...