British team devises method for separating carbon nanotubes cheaply

Jan 19, 2012 by Bob Yirka report
British team devises method for separating carbon nanotubes cheaply

(PhysOrg.com) -- When single walled carbon nanotubes (SWCNTs) are made, they come out in both metallic and semiconducting material form. Unfortunately, different applications require one or the other of these materials, but not both, which means they need to be separated. Even more unfortunately, efforts to do so have proven to be very expensive. Now, though, due to the efforts of a British team of physicists, as they describe in their paper in ACS Nano, a new method has been devised that allows SWCNTs to be separated cheaply enough to allow for bulk manufacturing.

It was only recently that a team at Stanford University devised a means for separating and sorting the two distinct forms of the SWCNTs, a breakthrough that had researchers dreaming of such exotic applications as . Sadly though, the they devised would have cost billions to produce just a kilo of the stuff, which of course very quickly put a damper on the development of applications.

Now though, the team in Britain from London’s Imperial College, led by Milo Shaffer, has figured out a way to do the job cheaply, and it’s all due to researchers from another lab at University College, discovering that Buckminster fullerenes dissolve in ammonia. To develop the new process, teams from both labs worked together.

The new process works like this. First the nanotubes are dissolved in a sodium and ammonia solution to purify and pull them apart, creating what they call a “nanotubide” solution; afterwards, the ammonia is removed. The result is a salt and nanotubide dry powder. The team then adds dimethylformamide to the powder which causes a portion of the salt-laden nanotubide to dissolve. By using just the right concentration in the original solution, the team has found that they can retrieve material that is mostly metallic SWCNT from the dissolved salt. And that, in all its simplicity, is pretty much all there is to it.

Besides allowing for SWCNTs to be made cheaply, the new process also eliminate the need for using a centrifuge which was a part of the process used in earlier methods and sometimes caused damage to the final product. Also, because this new method appears to be ready to go as is, the team has already licensed it to Linde, an industrial gas company.

This all means that those initial dreams of exotic products may now finally come to fruition, though of course, most of them, such as artificial skin, are still likely to be some ways off, as now that cheaply made SWCNTs can be had, there is still all the research ahead in actually using them to create such end products.

Explore further: Making graphene in your kitchen

More information: Scalable Method for the Reductive Dissolution, Purification, and Separation of Single-Walled Carbon Nanotubes, ACS Nano, Article ASAP. DOI: 10.1021/nn2041494

Abstract
As synthesized, bulk single-walled carbon nanotube (SWNT) samples are typically highly agglomerated and heterogeneous. However, their most promising applications require the isolation of individualized, purified nanotubes, often with specific optoelectronic characteristics. A wide range of dispersion and separation techniques have been developed, but the use of sonication or ultracentrifugation imposes severe limits on scalability and may introduce damage. Here, we demonstrate a new, intrinsically scalable method for SWNT dispersion and separation, using reductive treatment in sodium metal-ammonia solutions, optionally followed by selective dissolution in a polar aprotic organic solvent. In situ small-angle neutron scattering demonstrates the presence of dissolved, unbundled SWNTs in solution, at concentrations reaching at least 2 mg/mL; the ability to isolate individual nanotubes is confirmed by atomic force microscopy. Spectroscopy data suggest that the soluble fraction contains predominately large metallic nanotubes; a potential new mechanism for nanotube separation is proposed. In addition, the G/D ratios observed during the dissolution sequence, as a function of metal:carbon ratio, demonstrate a new purification method for removing carbonaceous impurities from pristine SWNTs, which avoids traditional, damaging, competitive oxidation reactions.

Related Stories

Cells selectively absorb short nanotubes

Mar 30, 2007

DNA-wrapped single-walled carbon nanotubes (SWCNTs) shorter than about 200 nanometers readily enter into human lung cells and so may pose an increased risk to health, according to scientists at the National ...

Nanochemistry in Action

Mar 06, 2009

(PhysOrg.com) -- Using a single-walled carbon nanotube (SWCNT) as a test tube, scientists can explore chemistry at the nanoscale, which involves some unique effects. Nanotubes provide a confined, one-dimensional ...

Recommended for you

Making graphene in your kitchen

11 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

rawa1
not rated yet Jan 20, 2012
Will reduced nanotubes maintain their original structure after oxidation of metal? IMO they will degrade during it.

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.