Breakthrough model reveals evolution of ancient nervous systems through seashell colors

Jan 12, 2012

Determining the evolution of pigmentation patterns on mollusk seashells—which could aid in the understanding of ancient nervous systems—has proved to be a challenging feat for researchers. Now, however, through mathematical equations and simulations, University of Pittsburgh and University of California, Berkeley, researchers have used 19 different species of the predatory sea snail Conus to generate a model of the pigmentation patterns of mollusk shells.

"There is no evolutionary record of nervous systems, but what you're seeing on the surface of seashells is a space-time record, like the recording of brain-wave activity in an electroencephalogram (EEG)," said project coinvestigator G. Bard Ermentrout, Pitt Distinguished University Professor of Computational Biology and a professor in the Kenneth P. Dietrich School of Arts and Sciences' Department of Mathematics.

Seashells differ substantially between the closely related Conus species, and the complexity of the patterns makes it difficult to properly characterize their similarities and differences. It also has proven difficult to describe the evolution of pigmentation patterns or to draw inferences about how natural selection might affect them. In a paper published in the Jan. 3 issue of the Proceedings of the National Academy of Sciences (PNAS) Online, Ermentrout and his colleagues attempt to resolve this problem by combining models based on natural evolutionary relationships with a realistic developmental model that can generate pigmentation patterns of the shells of the various Conus species.

In order for UC Berkeley scientists to create simulations, Ermentrout and his collaborators developed equations and a neural model for the formation of the pigmentation patterns on shell surfaces. With the equations in hand, Zhenquiang Gong, a UC Berkeley graduate student in engineering, used a computer to simulate the patterns on the shells, hand fitting the parameters to create a basic model for the patterns of a given species.

The results of this study have allowed the researchers to estimate the shell pigmentation patterns of ancestral species, identify lineages in which one or more parameters have evolved rapidly, and measure the degree to which different parameters correlate with the evolutionary development and history of the organisms. Since the parameters are telling the researchers something about the circuitry of the mollusks' nervous system, this is an indirect way to study the evolution of a simple nervous system.

"We've found that some aspects of the nervous system have remained quite stable over time, while there is a rapid of other portions," said Ermentrout.

"In the future, we hope to use similar ideas to understand other pattern-forming systems that are controlled by the ," Ermentrout added. "For instance, we would really like to develop models for some of the cephalopods like the cuttlefish and the octopus, which are able to change patterns on their skin in an instant."

Explore further: Sea star disease strikes peninsula marine centers

Related Stories

Mollusks taste memories to build shells (w/Video)

Apr 02, 2009

University of California, Berkeley, graduate student Alistair Boettiger has amassed a beautiful collection of seashells, but not by combing the beach. He created them in his computer.

Butterfly study sheds light on convergent evolution

Jul 21, 2011

For 150 years scientists have been trying to explain convergent evolution. One of the best-known examples of this is how poisonous butterflies from different species evolve to mimic each other's color patterns – in effect ...

Recommended for you

Rare Sri Lankan leopards born in French zoo

1 hour ago

Two rare Sri Lankan leopard cubs have been born in a zoo in northern France, a boost for a sub-species that numbers only about 700 in the wild, the head of the facility said Tuesday.

Japan wraps up Pacific whale hunt

2 hours ago

Japan announced Tuesday that it had wrapped up a whale hunt in the Pacific, the second campaign since the UN's top court ordered Tokyo to halt a separate slaughter in the Antarctic.

Researchers uncover secrets of internal cell fine-tuning

2 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

Getting a jump on plant-fungal interactions

2 hours ago

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Henrik
1.2 / 5 (6) Jan 16, 2012
Beware of simulations that try to predict anything using adjustable parameters. I see nothing that warrants the word breakthrough. Only a lot of maybe's and conjectures about how things might have been.
Deathclock
5 / 5 (5) Jan 16, 2012
Someone is afraid of these new-fangled computers and doesn't understand how simulations work or what can be learned from them... get with the times grandpa.
ursa major
5 / 5 (3) Jan 18, 2012
Henrik, Just be quiet and try reading for comprehension. Lordy, your comprehension of science doesn't even make it to the grade school level.