Bismuth nanoparticles provide high fidelity images of breast tumors

January 20, 2012

By combining a nanoparticle that is readily visible in X-ray computed tomography (CT) scans with a molecule that targets tumor lymph vessels and other tumor tissues, a research team from the University of California, San Diego (UCSD) and the Sanford-Burnham Medical Research Institute has developed a new imaging agent that provides high-fidelity CT images of tumors and their edges. This work, led by Michael Sailor of UCSD and Erkki Ruoslahti of the Burnham Institute, was published in the journal Angewandte Chemie International Edition.

The researchers chose to create a nanoparticle from bismuth, the same element that forms the active ingredient in Pepto-Bismol. Bismuth, with its relatively large and massive nucleus, interacts strongly with X-rays, making it an ideal agent to increase contrast in CT images. To target their bismuth nanoparticles to tumors, the investigators used a small cyclic peptide known as LyP-1. This peptide, discovered in Dr. Ruoslahti's laboratory, homes specifically to the that drain many tumors, as well as to tumor tissues themselves.

Safety tests showed that the bismuth-LyP-1 nanoparticle was well-tolerated when injected into mice and that the nanoparticles cleared from blood and accumulated in tumors within 24 hours. of tumor-bearing mice clearly revealed the presence of tumors and provided a very sharply-detailed image of the tumor margins for a full week after injection. Eventually, the nanoparticles clear from the body through the intestines.

This work, which is detailed in a paper titled, "X-ray computed tomography imaging of by using targeted peptide-labeled bismuth sulfide ," was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's website.

Explore further: Dual-Mode Nanoparticles Image Tumors Using MRI and PET

Related Stories

Dual-Mode Nanoparticles Image Tumors Using MRI and PET

August 15, 2008

Medical imaging represents one of the most used and useful procedures in the oncologist’s diagnostic toolkit, even though each of the most useful techniques—magnetic resonance imaging (MRI), computerized tomography x-ray ...

Nanoparticles Cooperate to Detect and Treat Tumors

March 26, 2010

( -- If one nanoparticle is good, two may be better, especially when they are designed to cooperate with each other to diagnose and treat cancer. That finding comes from work led by Michael Sailor, Ph.D., a member ...

Therapeutic nanoparticles targeted to radiation treated tumors

March 28, 2011

Radiation and chemotherapy are common partners in anticancer therapy for solid tumors, but too often, the combined side effects associated with each mode of therapy can limit how aggressively oncologists can treat their patients. ...

A better imaging agent for heart disease and breast cancer

April 27, 2011

Scientists are reporting development of a process for producing large quantities of a much-needed new imaging agent for computed tomography (CT) scans in heart disease, breast cancer and other diseases, and the first evidence ...

Recommended for you

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.