Bacteria to the rescue

Jan 24, 2012
Isosurfaces for simulated aqueous U (VI) concentrations 40 days after initiating the 2008 field experiment at the Rifle Site.

At several U.S. Department of Energy (DOE) sites, uranium mining, milling, and processing have led to groundwater contamination that persists above drinking water standards—in spite of natural flushing and the removal of contaminated sediments.  A multi-institutional research team, including researchers at DOE's Pacific Northwest National Laboratory (PNNL), is investigating the use of bioremediation to treat the subsurface uranium plumes and remove pollutants. Research conducted by the team at the Integrated Field Research Challenge (IFRC) site in Rifle, Colorado has shown that indigenous bacteria can be stimulated to immobilize the uranium, resulting in groundwater concentrations below the U.S. Environmental Protection Agency standard.

A key component of the research is the use of high-performance computers and comprehensively detailed simulation codes to better understand the subsurface processes, properties, and conditions controlling uranium behavior.  Using a code designed to efficiently exploit the large memory and high-performance of advanced computers, PNNL researchers were able to incorporate more processes and interactions of interest at higher levels of detail, with simulations completing in hours rather than weeks.

To account for the high spatial and temporal resolution, and the large number of reactive species, minerals, and microbially mediated reactions, researchers used PNNL's eSTOMP subsurface simulator on the Environmental Molecular Sciences Laboratory's (EMSL's) massively parallel supercomputer, Chinook, to model the 110-day in situ field experiment and 50 days of post-biostimulation behavior. The capability included variably saturated flow and biogeochemical reactive transport through three-dimensional physically and chemically heterogeneous sediments, as well as new knowledge about the behavior and interaction of the stimulated microbial community with the subsurface geochemical environment. In addition to the metal-reducing bacteria that catalyze the formation of immobile uranium, researchers demonstrated the importance of accounting for sulfate-reducing bacteria activity-finding that bioreduction is most effective when acetate concentrations are engineered to exceed the sulfate-reducing bacteria demand.

Researchers are working to incorporate genome-scale metabolic models into eSTOMP field-scale simulations to more accurately account for the biologically-mediated reactions and rates. The approach builds on advancements in the collection and analysis of proteomic data that are used to assess and validate the large number of detailed cellular process mechanisms in naturally complex field settings.

Explore further: 60% of China underground water polluted: report

More information: Yabusaki SB, et al. 2011. "Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment." Journal of Contaminant Hydrology 126(3-4):271-290. DOI:10.1016/j.jconhyd.2011.09.002

add to favorites email to friend print save as pdf

Related Stories

Metabolic models make remediation more manageable

Jun 08, 2011

(PhysOrg.com) -- In efforts to reduce contamination at a former uranium mill tailings site, Dr. Krishna Mahadevan is developing genome-scale models to determine why certain bacteria reduce uranium better than ...

Patience pays off with methanol for uranium bioremediation

Feb 23, 2009

The legacy of nuclear weapons and nuclear energy development has left ground water and sediment at dozens of sites across the United States and many more around the world contaminated with uranium. The uranium is transported ...

Recommended for you

NASA image: Fires in the Primorsky Province of Russia

2 hours ago

One of the most influential ecological disturbances is fire. Fire can spread so rapidly and for such far distances that its impact on land is for the most part far greater than any other factor. Less than ...

User comments : 0

More news stories

Climate change likely to make Everest even riskier

Climbing to the roof of the world is becoming less predictable and possibly more dangerous, scientists say, as climate change brings warmer temperatures that may eat through the ice and snow on Mount Everest.

Male-biased tweeting

Today women take an active part in public life. Without a doubt, they also converse with other women. In fact, they even talk to each other about other things besides men. As banal as it sounds, this is far ...

High-calorie and low-nutrient foods in kids' TV

Fruits and vegetables are often displayed in the popular Swedish children's TV show Bolibompa, but there are also plenty of high-sugar foods. A new study from the University of Gothenburg explores how food is portrayed in ...