Aging-related degeneration caused by defects of energy metabolism in tissue stem cells?

Jan 03, 2012

Aging-related tissue degeneration can be caused by mitochondrial dysfunction in tissue stem cells. The research group of Professor Anu Suomalainen Wartiovaara in Helsinki University, with their collaborators in Max Planck Institute for Biology of Aging, Karolinska Institutet and University of Wisconsin reported on the 3rd January in Cell Metabolism their results on mechanisms of aging-associated degeneration.

Stem cells are called the spare parts for tissues, as they maintain and repair tissues during life. They are multipotent and can produce a variety of different cell types, from to neurons and . Mitochondria are the cellular engine: they transform the energy of nutrients to a form that cells can use, and in this process they burn most of the inhaled oxygen. If this nutrient 'burning' is inefficient, the engine will produce exhaust fumes, , which damage cellular structures, including the genome. Antioxidants target to scavenge these radicals.

Already in 2004 and 2005 a research model was created in Sweden and USA, which accumulated a heavy load of mitochondrial genome defects. This led to symptoms of premature aging: thin skin, graying of hair, baldness, osteoporosis and anemia.

In the current publication, scientist Kati Ahlqvist in Professor Suomalainen Wartiovaara's group showed that these symptoms were partially explained by stem cell dysfunction. The number of did not reduce, but their function was modified: the progeny cells in blood and the nervous system were dysfunctional. The researchers also found out that these defects could be partially prevented by early antioxidant treatment.

"This suggests that oxygen radicals can regulate stem cell function and that these cells are very susceptible for mitochondrial dysfunction. These findings may also be important to understand mechanisms of mitochondrial disease", Professor Suomalainen Wartiovaara says.

The results are a breakthrough in revealing the unexpected importance of energy metabolism in regulating stem cell function and tissue maintenance. These findings increase the understanding of mechanisms of aging-related degeneration.

Explore further: Micro fingers for arranging single cells

Related Stories

Scientists turn back the clock on adult stem cells aging

Sep 20, 2011

Researchers have shown they can reverse the aging process for human adult stem cells, which are responsible for helping old or damaged tissues regenerate. The findings could lead to medical treatments that may repair a host ...

New properties of skin stem cells

Oct 14, 2008

Recent research from the Swedish medical university Karolinska Institutet reveals completely new properties of the skin's stem cells – discoveries that contradict previous findings. The studies, which are published in Nature Ge ...

Recommended for you

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Detailed structure of human ribosome revealed

Apr 24, 2015

A team at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC - CNRS/Université de Strasbourg/Inserm) has evidenced, at the atomic scale, the three-dimensional structure of the complete ...

How to kill a protein

Apr 24, 2015

For decades scientists have been looking closely at how our cells make proteins. But the inverse is equally important: how cells kill them.

How RNA machinery navigates our genomic obstacle course

Apr 24, 2015

Once upon a time, scientists thought RNA polymerase—the molecule that kicks off protein synthesis by transcribing DNA into RNA—worked like a wind-up toy: Set it down at a start site in our DNA and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.