Zeolite synthesis made easy

Dec 12, 2011

Zeolites are porous materials with perfectly regular pores and high surface area that can act as molecular sieves. This property has led to important applications including the purification of air or water such as the contaminated seawater around Fukushima.

Zeolites are used as catalysts – all gasoline is now made with zeolites – and for the separation and adsorption of numerous substances. While more than 200 zeolites are known today, many require expensive organic structure-directing agents ("templates") as well as high temperature and pressure for their synthesis. Synthesis of one of the most attractive, stable zeolites with very large , called EMT, has so far required a very expensive template, which has precluded industrial applications.

Now a team of researchers including Dr. Svetlana Mintova from the Laboratoire Catalyse et Spectrochimie in Caen (France) and Prof. Thomas Bein from the Department of Chemistry of the Ludwig-Maximilians-University (LMU) in Munich has discovered a novel route for the synthesis of EMT from colloidal precursors at near ambient temperature within a short time.

The novel approach dispenses with the organic template, and produces the smallest known zeolite nanocrystals with the most open pore network, which is highly desirable because it provides very short pathways for molecules entering the crystals for catalytic reactions. From an environmental perspective, the novel synthesis of the ultrasmall EMT zeolite presented here represents a major advance, as the nanocrystals can be easily prepared at low temperature without the use of any noxious or expensive template.

Similarly, scale-up of an energy-efficient synthesis should be economically viable, since high temperatures, long reaction times and calcination steps are avoided. Moreover, important applications of these ultrasmall zeolite disks are anticipated, including catalysis with larger molecules, selective adsorption, and the design of ultrathin films, membranes, sensors and nanoscale devices. (suwe)

Explore further: Fuel and chemicals from steel plant exhaust gases

More information: Capturing Ultrasmall EMT Zeolite from Template-Free Systems, Eng-Poh Ng, Daniel Chateigner, Thomas Bein, Valentin Valtchev, Svetlana Mintova, Science online, 8. December 2011 DOI: 10.1126/science.1214798

Related Stories

New zeolite is discovered

Oct 18, 2006

A Spanish-led team of geologists has reported discovering a porous material with a new, highly open framework structure.

Exploring the possibilities for zeolites

Apr 05, 2011

Some people collect stamps and coins, but when it comes to sheer utility, few collections rival the usefulness of Rice University researcher Michael Deem's collection of 2.6 million zeolite structures.

Recommended for you

Metal encapsulation optimizes chemical reactions

17 hours ago

The chemical industry consumes millions of tons of packing materials as catalytic sup- port media or adsorbents in fixed-bed reactors and heat storage systems. Fraunhofer researchers have developed a means of encapsulating ...

Fuel and chemicals from steel plant exhaust gases

17 hours ago

Carbon monoxide-rich exhaust gases from steel plants are only being reclaimed to a minor extent as power or heat. Fraunhofer researchers have developed a new recycling process for this materially unused carbon resource: They ...

Self-assembly of molecular Archimedean polyhedra

18 hours ago

Chemists truly went back to the drawing board to develop new X-shaped organic building blocks that can be linked together by metal ions to form an Archimedean cuboctahedron. In the journal Angewandte Chemie, the sc ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.