The world's biggest radar laboratory

Dec 08, 2011

In the past year, the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed 18 new scanning radars at its research sites in Oklahoma, Alaska, and the tropical western Pacific. These highly sophisticated new radars are providing extraordinary 4-dimensional information to help scientists better understand the lifecycle of clouds.

Today at the meeting in San Francisco, Gerald "Jay" Mace, a professor of atmospheric science at the University of Utah, discusses the research implications of these radars during a press conference on new weather and technology. Throughout the week, numerous other researchers presented preliminary results using data collected from the new radars.

These new radars provide the world's most detailed data about the formation, structure, and evolution of clouds and precipitation. These details are very important for accurately simulating cloud processes in , particularly for under-represented regions like the Arctic and the tropical Pacific.

Like the Doppler weather radars that TV meteorologists use for daily weather forecasts, the precipitation radars can measure the size and shape of and ice crystals falling from clouds, as well as the speed at which the cloud system is moving. The new cloud radars, on the other hand, emit pulses at much higher frequencies, improving their sensitivity to microscopic cloud particles. And unlike other cloud radar systems, they also operate continuously and unattended to provide data over time—the fourth dimension.

Combined, the data from both types of radars give incredibly detailed information about the interactions between clouds, aerosols and precipitation in the atmosphere that make up the lifecycles of clouds. This complex and dynamic process is one reason that climate models have such a difficult time simulating Earth's climate, both at regional and global scales.

Continuous Data for Climate Research

Despite improvements in computing power, current weather and climate models are unable to accurately reproduce the formation, growth and decay of clouds and precipitation associated with cloud systems. Not only is this due to a lack of data about precipitation, but also about the 3-dimensional environment of the surrounding clouds, winds, and moisture, and how that affects the transfer of energy between the sun and Earth.

To obtain this type of holistic data, the new scanning radars operate at multiple frequencies: the precipitation radars at 5 and 10 gigahertz, and the cloud radars at 10, 35, and 94 gigahertz. At these very high frequencies, the radars can detect particles ranging from 10 centimeters down to 10 micrometers.

Various combinations of these radars are now deployed at the ARM Facility's four permanent sites within three of the Earth's major climate regimes: Arctic high latitude at Barrow, Alaska; continental mid latitude at Lamont, Oklahoma; tropical latitude at Darwin, Australia and Manus Island, Papua New Guinea. They have also been added to each of ARM's two mobile facilities; these portable observatories are deployed around the world for field campaigns lasting six months to a year, on average, to obtain additional data from under-explored climate regions.

The new radars, purchased with a $30 million investment from the American Recovery and Reinvestment Act of 2009, were designed and built by ProSensing, Inc., of Amherst, Mass., Advanced Radar Corporation of Boulder, Colo., and Radtec Engineering Inc., from Broomfield, Colo. They complement the ARM Facility's new 35-gigahertz vertical-pointing profiling cloud radars and nearly two dozen other instruments systems at each site that obtain continuous data to support studies of Earth systems.

Explore further: Magnitude-7.2 earthquake shakes Mexican capital

Provided by DOE/US Department of Energy

3 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Ice heating up cold clouds

Sep 21, 2011

In the Arctic, competition within clouds is hot. The small amount of heat released when water vapor condenses on ice crystals in Arctic clouds, which contain both water and ice, determines the cloud's survival, ...

Recommended for you

Magnitude-7.2 earthquake shakes Mexican capital

Apr 18, 2014

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

User comments : 0

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...