A 'wild card' in your genes

Dec 07, 2011
A 'wild card' in your genes

The human genome and the endowments of genes in other animals and plants are like a deck of poker cards containing a "wild card" that in a genetic sense introduces an element of variety and surprise that has a key role in life. That's what scientists are describing in a review of more than 100 studies on the topic that appears in ACS Chemical Biology.

Rahul Kohli and colleagues focus on , one of the four chemical "bases" that comprise the alphabet that the DNA uses to spell out everything from hair and eye color to risk of certain diseases. But far from just storing information, cytosine has acquired a number of other functions that give it a claim to being the genome's wild card. "In poker, the rules of the game can occasionally change," they note in the article. "Adding a 'wild card' to the mix introduces a new degree of variety and presents opportunities for a skilled player to steal the pot. Given that evolution is governed by the same principles of risk and reward that are common to a poker game, it is perhaps not surprising that a genomic 'wild card' has an integral role in biology."

They discuss the many faces of cytosine that make it such a game-changer and the biological processes that help to change its identity. Removing something called an amine group from cytosine, for instance, allows the immune system to recognize and destroy foreign invaders such as viruses. Adding so-called "" on cytosines acts as on/off switches for genes. The authors say that these many faces of cytosine allow it to play various roles and give it true "wild card" status.

Explore further: Chemists warn scientific community of research dollars and time being wasted on PAINS

More information: The Curious Chemical Biology of Cytosine: Deamination, Methylation,and Oxidation as Modulators of Genomic Potential, ACS Chem. Biol., Article ASAP. DOI: 10.1021/cb2002895

Abstract
A multitude of functions have evolved around cytosine within DNA, endowing the base with physiological significance beyond simple information storage. This versatility arises from enzymes that chemically modify cytosine to expand the potential of the genome. Some modifications alter coding sequences, such as deamination of cytosine by AID/APOBEC enzymes to generate immunologic or virologic diversity. Other modifications are critical to epigenetic control, altering gene expression or cellular identity. Of these, cytosine methylation is well understood, in contrast to recently discovered modifications, such as oxidation by TET enzymes to 5-hydroxymethylcytosine. Further complexity results from cytosine demethylation, an enigmatic process that impacts cellular pluripotency. Recent insights help us to propose an integrated DNA demethylation model, accounting for contributions from cytosine oxidation, deamination, and base excision repair. Taken together, this rich medley of alterations renders cytosine a genomic “wild card”, whose context-dependent functions make the base far more than a static letter in the code of life.

add to favorites email to friend print save as pdf

Related Stories

Scientists identify seventh and eighth bases of DNA

Jul 21, 2011

For decades, scientists have known that DNA consists of four basic units -- adenine, guanine, thymine and cytosine. Those four bases have been taught in science textbooks and have formed the basis of the growing knowledge ...

Environment and diet leave their prints on the heart

Nov 29, 2011

A University of Cambridge study, which set out to investigate DNA methylation in the human heart and the 'missing link' between our lifestyle and our health, has now mapped the link in detail across the entire human genome.

Hopkins team discovers how DNA changes

Apr 14, 2011

Using human kidney cells and brain tissue from adult mice, Johns Hopkins scientists have uncovered the sequence of steps that makes normally stable DNA undergo the crucial chemical changes implicated in cancers, psychiatric ...

14-year-old CEO makes chemistry a game with 'Elementeo'

Apr 08, 2008

Age seems to be no obstacle when it comes to starting a business. That’s the case with 14-year-old Anshul Samar, CEO of Alchemist Empire, Inc., who invented a trading card game, “Elementeo,” that aims ...

Recommended for you

The origins of handedness in life

20 hours ago

Handedness is a complicated business. To simply say life is left-handed doesn't even begin to capture the blooming hierarchy of binary refinements it continues to evolve. Over the years there have been numerous ...

Driving cancer cells to suicide

Sep 30, 2014

Ludwig Maximilian University of Munich researchers report that a new class of chemical compounds makes cancer cells more sensitive to chemotherapeutic drugs. They have also pinpointed the relevant target ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

that_guy
not rated yet Dec 07, 2011
Surprise! You have three legs! You win!