Vertical silicon nanowires for nonvolatile memory devices

December 23, 2011 By Lee Swee Heng

As electronic devices become smaller and more sophisticated, the search for compact nonvolatile memory becomes increasingly important. However, conventional silicon technologies, such as complementary metal-oxide-semiconductor (CMOS) and floating gate flash memory, are fast reaching their scaling limit. Further miniaturization could seriously affect their performance and stability.

Navab Singh and co-workers at the A*STAR Institute of Microelectronics and the Nanyang Technical University of Singapore have now created a highly scalable method for storing data using vertical nanowires. Their device contains none of the ‘junctions’ commonly used in conventional silicon technologies and has a much smaller footprint.

In a device, a junction is the boundary of a p-type and an n-type semiconductor created by adding functional impurities selectively into the semiconductor crystal. In the new device, Singh and co-workers created an ‘electrical’ junction by carefully selecting the gate material based on their work function and eliminating the need for any doped junction inside the silicon nanowires. The charges are stored in a nitride thin film sandwiched between the surrounding gate and the wire, separated by thin oxide layers on both sides.

“The nanowires are uniformly doped without junctions and conduction through them is controlled by a gate surrounding their central portion,” explains Singh. “The gate material is selected such that when there is zero potential applied on the gate, the wire is fully depleted of carriers and the current cannot flow, creating an OFF state.”

The amount of charge tunneled into the nitride from the nanowire also influences the current through the wire. The different current values, namely ‘high’ or ‘low’, caused by different numbers of charges trapped and their position in the nitride, signify different data bits.

“Our devices, being vertical, enjoy multi-bit data storage per cell because charges trapped at different locations in the nitride do not interfere with each other, meaning they can remain far apart even with aggressive scaling of the footprint,” says Singh. “Such interference has been one of the key challenges in scaling the . Furthermore, we can put multiple cells on a single wire like a multi-storey building, allowing even more bits being stored per nanowire.”

The devices are sensitive to variations, so the researchers had to run the process under tight controls. In particular, the vertical nanowires must be uniform in shape due to differences between the top and bottom storage bits if tapered.

Despite these challenges, Singh believes the junctionless system may hold the key to future memory storage for data centers, computers and mobile devices. What’s more, by removing the doped junctions, devices could be much simpler and cheaper to make.

Explore further: IMEC presents novel non-volatile memory capable of storing 9 bits per cell

More information: Research article in Electron Device Letters

Related Stories

New device may revolutionize computer memory

January 20, 2011

( -- Researchers from North Carolina State University have developed a new device that represents a significant advance for computer memory, making large-scale "server farms" more energy efficient and allowing ...

It's a wrap! Nanowire opens gate to new devices

April 7, 2011

( -- In an interesting feat of nanoscale engineering, researchers at Lund University in Sweden and the University of New South Wales have made the first nanowire transistor featuring a concentric metal 'wrap-gate' ...

Recommended for you

Internet giants race to faster mobile news apps

October 4, 2015

US tech giants are turning to the news in their competition for mobile users, developing new, faster ways to deliver content, but the benefits for struggling media outlets remain unclear.

Radio frequency 'harvesting' tech unveiled in UK

September 30, 2015

An energy harvesting technology that its developers say will be able to turn ambient radio frequency waves into usable electricity to charge low power devices was unveiled in London on Wednesday.

Professors say US has fallen behind on offshore wind power

September 29, 2015

University of Delaware faculty from the College of Earth, Ocean, and Environment (CEOE), the College of Engineering and the Alfred Lerner School of Business and Economics say that the U.S. has fallen behind in offshore wind ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.