Unraveling malaria's genetic mysteries

Dec 22, 2011
SFU molecular biologists Jack Chen and Christian Frech review a graphic representation of genomic similarities and differences they've isolated between two major human malaria parasites.

(PhysOrg.com) -- Simon Fraser University researchers in biology and computing sciences are starting to piece together a picture that may help scientists and doctors save more than a million lives annually.

These lives — mostly children in developing countries like Africa — are claimed by two of 200 known species of malaria parasites carried by mosquitoes.

SFU molecular biologist Jack Chen and his doctoral student Christian Frech are unraveling genetic clues about why these two species cause all malaria deaths and 90 per cent of human infections.

The pair analysed the genomes of the two most deadly malaria parasites infecting humans (Plasmodium falciparum and Plasmodium vivax). They also analysed the genomes of a parasite infecting monkeys and humans (P. knowlesi) and three infecting rodents (P. berghei, P. yoelii and P. chabaudi).

Building on five years of collaborative work with other SFU researchers, Chen and Frech used an array of powerful bioinformatics programs to sift through thousands of genes that define six malaria parasites. Chen’s lab and researchers co-developed two of the programs.

Chen and Frech have isolated 44 genes as unique because they aren’t shared between the species.

Sixteen of the 44 isolated genes were found only in malaria parasites infecting primates (humans and monkeys) and not rodents. Three of these genes help to produce vitamin B1, which is essential to all living organisms’ survival.

“Why particularly human malaria parasites produce their own vitamin B1 and do not rely on vitamin B1 uptake from their host is now an intriguing question for future research,” says Frech.

Another 13 isolated genes were found only in the two virulent human-infecting parasites.

“Some of these genes are specifically active in the developmental stages of the parasite within the mosquito,” says Chen. “This suggests these genes could play an important role in the mosquito’s transmission of malaria to humans.”

“Gene loss and gain in a species often dictate their comparative strengths and weaknesses,” says Chen. “That leads us to believe that the unique only to the human-infecting parasites, which happen to be the most deadly, are linked to disease development, transmission and virulence in humans.”

Explore further: Vermicompost leachate improves tomato seedling growth

More information: Genome comparison of human and non-human malaria parasites reveals species subset-specific genes potentially linked to human disease, PLoS Computational Biology: www.sfu.ca/content/dam/sfu/pam… os_compbio_final.pdf

add to favorites email to friend print save as pdf

Related Stories

Profiling malaria-causing parasites

Feb 07, 2011

The majority of fatal cases of malaria are caused by infection with the parasite Plasmodium falciparum. Most at risk are young children and women who are pregnant. A team of researchers, led by Patrick Duffy, at the Nation ...

Malaria immunity trigger found for multiple mosquito species

Mar 13, 2009

(PhysOrg.com) -- Researchers at the Johns Hopkins Bloomberg School of Public Health have for the first time identified a molecular pathway that triggers an immune response in multiple mosquito species capable of stopping ...

Recommended for you

Vermicompost leachate improves tomato seedling growth

Nov 21, 2014

Worldwide, drought conditions, extreme temperatures, and high soil saline content all have negative effects on tomato crops. These natural processes reduce soil nutrient content and lifespan, result in reduced plant growth ...

Plant immunity comes at a price

Nov 21, 2014

Plants are under permanent attack by a multitude of pathogens. To win the battle against fungi, bacteria, viruses and other pathogens, they have developed a complex and effective immune system. And just as ...

Evolution: The genetic connivances of digits and genitals

Nov 20, 2014

During the development of mammals, the growth and organization of digits are orchestrated by Hox genes, which are activated very early in precise regions of the embryo. These "architect genes" are themselves regulated by ...

Surrogate sushi: Japan biotech for bluefin tuna

Nov 20, 2014

Of all the overfished fish in the seas, luscious, fatty bluefin tuna are among the most threatened. Marine scientist Goro Yamazaki, who is known in this seaside community as "Young Mr. Fish," is working to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.