Study uncovers clues to what makes anesthetics work

Dec 22, 2011

Physicians use inhalation anesthetics in a way that is incredibly safe for patients, but very little is known about the intricacies of how these drugs actually work in children and adults. Now, researchers have uncovered what cells respond to anesthesia in an organism known as the C. elegans, according to a new study from the Seattle Children's Research Institute. C. elegans is a transparent roundworm used often in research. The study, "Optical reversal of halothane-induced immobility in C. elegans," is published in the December 20, 2011 issue of Current Biology.

"Our findings tell us what cells and channels are important in making the work," said lead author Phil Morgan, MD, researcher at Seattle Children's Research Institute and University of Washington professor of anesthesiology and . "The scientific community has attempted to uncover the secrets of how anesthetics work since the 1860s, and we now have at least part of the answer." Margaret Sedensky, MD, Seattle Children's Research Institute and a UW professor of anesthesiology and pain medicine, and Vinod Singaram, graduate student, Case Western Reserve University, are co-lead authors of the study.

The team studied the after inserting a pigment or protein typically found in the retina of a — called a retinal-dependent rhodopsin channel — into its cells. The proteins in cell membranes act as channels to help movement. Researchers then used a blue light, activating channels in the roundworm that allowed the immediate reversal of anesthetics, and resulting in the roundworm waking up and seemingly swimming off the slide.

This video is not supported by your browser at this time.
A roundworm (known as C. elegans) is under anesthesia in the first part of the video. At 17 seconds, a blue light is turned on, with the effect of reversing the anesthesia.

The team's findings won't immediately translate into a discovery that would be available for humans, cautioned Dr. Morgan, who has been working in this field for some 25 years. "But it tells us what function we have to treat to try to do so," he said.

"We believe that there is a class of potassium channels in humans that are crucial in this process of how anesthetics work and that they are perhaps the ones that are sensitive to potential anesthesia reversal. There are drugs for blocking these channels and with these same drugs, maybe we can eventually reverse anesthesia." Potassium channels are found in all living organisms and in most cell types, and they control a wide variety of cell functions.

Anesthesia medications are used in both children and adults, but many are used more often in kids. Dr. Morgan and his colleagues plan to replicate the study in other animal models, starting with a mouse.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: The study "Optical reversal of halothane-induced immobility in C. elegans," in Current Biology can be found here: www.cell.com/current-biology/a… 0960-9822(11)01203-6

Related Stories

Scientists model the pathways of pain-blocking meds

Sep 26, 2011

Benzocaine, a commonly used local anesthetic, may more easily wiggle into a cell's membrane when the membrane is made up of compounds that carry a negative charge, a new study shows. The finding could help scientists piece ...

Children's agitation after surgery may be preventable

Oct 08, 2010

Temporary combativeness after surgery—a complication affecting up to half of anesthetized children—may be preventable with drugs that decrease epinephrine production, according to a Medical College ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

HannesAlfven
1 / 5 (1) Dec 22, 2011
The notion that pumps and channels are necessary to transport ions in and out of cells is based upon the assumption that cells are filled with aqueous solution which is contained by a membrane. But, numerous studies demonstrate that when the cell membrane is punctured, the contents do not spill out. That's because the cytoplasm is in fact a gel. This has been known for a few decades now. Gels negate the need for pumps and channels, as they naturally exhibit ionic gradients. But, more importantly, gels come with significant additional functionality through their ability to switch states (aka "phase transitions"). This functionality is absolutely critical to understanding how life operates and evolved.

This error in cell biology is causing massive confusion in the fields of biology and medicine. See Gerald Pollack's Cells, Gels and the Engines of Life for a listing of the numerous studies which support these claims.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.