Tiny protein helps bacteria 'talk' and triggers defensive response in plants

Dec 12, 2011

Scientists have discovered a new signal that helps invading bacteria communicate but also helps targeted rice plants coordinate defensive attacks on the disease-causing invaders, a finding that could lead to new methods of combatting infection not just in plants, but in humans.

Findings from the study, conducted by a team of researchers led by a University of California, Davis, scientist, will be reported in the Dec. 12 issue of the journal and in the journal Discovery Medicine.

"Just as invading armies often use coded messages to coordinate attacks on their targets, so single-celled bacteria use biological signals to communicate when they attack ," said Pamela Ronald, a UC Davis professor of and the lead researcher on the study. "Scientists have known this for 20 years, however results from our study reveal a type of bacterial signal that has never been described before."

UC Davis has a long history of tackling agricultural and related to in the United States and around the world. Today, campus researchers are using to better understand how to improve the hardiness and yield of this grain, which is a staple food for more than half of the world's population and an important model for plant research.

Up until now, scientists thought that two major groups of bacteria used two distinctly different types of communication codes, Ronald said. However Ax21, the small protein examined in this study, doesn't fit into either of those previously identified communication codes.

Ax21 is made inside the bacterial cell and processed to generate a shorter signal that is secreted outside the bacterium. This signal tips off other bacteria to assemble themselves into elaborate protective bunkers, called , which make the bacteria resistant to drying out and antibiotic treatment.

"Additionally, Ax21 triggers a change in the expression of nearly 500 , transforming the bacteria from fairly benign organisms into fierce invaders," Ronald said.

"In essence, through communication and communal living, the bacteria increase their chances of survival and proliferation," she said, noting that in rice, the bacteria multiply rapidly in the arteries that transport water, causing the plant to wither and die.

While most rice plants have little defense against the Ax21-mediated bacterial attack, some carry an immune receptor called XA21 that detects the Ax21 protein produced by the invading bacteria. XA21 belongs to a large class of immune receptors in plants and animals.

The importance of these receptors in immunity is reflected in the awarding of the 2011 Nobel Prize in physiology and medicine to researchers Bruce Beutler of The Scripps Research Institute in La Jolla and Jules Hoffman of the National Center of Scientific Research in Strasbourg, France, for their discoveries of similar receptors in animals.

The new study points out that the Ax21 signaling protein triggers the XA21 immune receptor to biologically alert the plant to launch a powerful defense response against the invading bacteria. The researchers also demonstrated that Ax21 is present in a human disease-causing bacterium that is known to infect hospital patients.

"This study demonstrates that bacteria communicate using private messages. However, plants can intercept these messages and gain a tactical advantage in the evolutionary battle," Ronald said. " It's a fascinating story."

Explore further: Fighting bacteria—with viruses

More information: Han S-W, Sriariyanun M, Lee S-W, Sharma M, Bahar O, et al. (2011) Small Protein-Mediated Quorum Sensing in a Gram-Negative Bacterium. PLoS ONE 6(12): e29192. doi:10.1371/journal.pone.0029192

Journal reference: PLoS ONE search and more info website

Provided by University of California - Davis

3 /5 (2 votes)

Related Stories

Bacteria surrenders plant war secrets

Jul 13, 2006

U.S. scientists say they've discovered the secret weapon of bacteria -- the way they secure a foothold in plants to launch an invasion.

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0