Supercomputer reveals new details behind drug-processing protein model

December 6, 2011
ORNL researchers used simulation to reveal how water molecules (seen in red) move in and out of the active site (seen in blue) of a P450 enzyme. This class of enzymes is responsible for detoxifying a large fraction of drugs taken by humans. Credit: Jerome Baudry UT/ORNL

Supercomputer simulations at the Department of Energy's Oak Ridge National Laboratory are giving scientists unprecedented access to a key class of proteins involved in drug detoxification.

Jerome Baudry and Yinglong Miao, who are jointly affiliated with ORNL and the University of Tennessee, have performed simulations to observe the motions of in a class of enzymes called P450s. Certain types of P450 are responsible for processing a large fraction of drugs taken by humans.

The were designed to help interpret ongoing neutron experiments.

"We simulated what happens in this enzyme over a of 0.3 microseconds, which sounds very fast, but from a scientific point of view, it's a relatively long time," Baudry said. "A lot of things happen at this scale that had never been seen before. It's a computational tour de force to be able to follow that many water molecules for that long."

The team's study of the water molecules' movements contributes to a broader understanding of drug processing by P450 enzymes. Because some populations have a slightly different version of the enzymes, scientists hypothesize that mutations could partially explain why people respond differently to the same drug. One possibility is that the mutations might shut down the channels that bring water molecules in and out of the enzyme's active site, where the chemical modification of drugs takes place. This could be investigated by using the developed for this research.

By simulating how water molecules move in and out of the protein's centrally located active site, the team clarified an apparent contradiction between and theory that had previously puzzled researchers. X-ray crystallography, which provides a static snapshot of the protein, had shown only six water molecules present in the active site, whereas indicated a higher number of water molecules would be present in the enzyme.

"We found that even though there can be many water molecules -- up to 12 at a given time that get in and out very quickly -- if you look at the average, those water molecules prefer to be at a certain location that corresponds to what you see in the crystal structure," Miao said. "It's a very dynamic hydration process that we are exploring with a combination of neutron scattering experiments and simulation."

The simulation research is published in Biophysical Journal as "Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process."

Explore further: Rehydrate -- your RNA needs it

Related Stories

Rehydrate -- your RNA needs it

August 22, 2006

Water, that molecule-of-all-trades, is famous for its roles in shaping the Earth, sustaining living creatures and serving as a universal solvent. Now, researchers at the University of Michigan and the Academy of Sciences ...

Unlocking the function of enzymes

November 6, 2007

Fitting a key into a lock may seem like a simple task, but researchers at Texas A&M University are using a method that involves testing thousands of keys to unlock the functions of enzymes, and their findings could open the ...

Supercomputing research opens doors for drug discovery

December 9, 2010

A quicker and cheaper technique to scan molecular databases developed at the Department of Energy's Oak Ridge National Laboratory could put scientists on the fast track to developing new drug treatments.

'Fingerprints' match molecular simulations with reality

February 22, 2011

A theoretical technique developed at the Department of Energy's Oak Ridge National Laboratory is bringing supercomputer simulations and experimental results closer together by identifying common "fingerprints."

New insight into how 'tidying up' enzymes work

March 28, 2011

A new discovery about how molecules are broken down by the body, which will help pharmaceutical chemists design better drugs, has been made by researchers at the University of Bristol.

Recommended for you

Antibody-making bacteria promise drug development

August 31, 2015

Monoclonal antibodies, proteins that bind to and destroy foreign invaders in our bodies, routinely are used as therapeutic agents to fight a wide range of maladies including breast cancer, leukemia, asthma, arthritis, psoriasis, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.