Record conductivity achieved in strained lattice organic semiconductor

Dec 21, 2011 by Andrew Myers
These semiconductor crystals have more than doubled the record for electrical conductivity of an organic semiconductor.

(PhysOrg.com) -- Organic semiconductors could usher in an era of foldable smartphones, better high-definition television screens and clothing made of materials that can harvest energy from the sun needed to charge your iPad, but there is one serious drawback: Organic semiconductors do not conduct electricity very well.

In a paper to be published online on Wednesday by the journal Nature, researchers at Stanford led by chemical engineer Zhenan Bao have changed that equation by improving the ability of the to move through organic semiconductors. The secret is in packing the molecules closer together as the form, a technique engineers describe as straining the .

Bao and her colleagues have more than doubled the record for electrical conductivity of an and shown an eleven-fold improvement over unstrained lattices of the same semiconductor.

"Strained lattices are no secret. We've known about their favorable electrical properties for decades and they are in use in today's silicon computer chips, but no one has been successful in creating a stable strained lattice organic semiconductor with a very short distance between molecules, until now," said Bao.

In the past, engineers have tried to compress the lattices in these materials by synthetically growing the crystals under great pressure. "But, as soon as you release the pressure, the crystal just goes back to its natural, unstrained state," said Bao. "We've been able to stabilize these crystals in tighter formations than ever before."

Fine-tuning

Bao's team used a solution shearing technique similar to a coating process well known in the . Solution shearing involves a thin liquid layer of the semiconductor sandwiched between two metal plates. The lower plate is heated and the upper plate floats atop the liquid, gliding across it like a barge. As the top plate moves, the trailing edge exposes the solution to a vaporized solvent and, heated by the lower plate, the crystals form into a thin film.

"Using a process so similar to current industry technology is important, as it could speed these new semiconductors to market," said Bao.

The engineers can then "tune" the speed at which the top plate moves, the thickness of the solution layer, the temperature of the lower plate, and other engineering factors to achieve optimal results.

The crystals form in differing structures based on the speed at which the top plate moves. These differences are clearly evident in photographs. At slow speeds, the crystals form in long, straight structures, in line with the direction the top plate is moving. At higher speeds, the crystals form wildly irregular patterns, and in other speeds the patterns resemble tiny snowflakes.

The engineers next tested the various crystalline patterns for their . They found that optimal was achieved when the top plate moved at 2.8 millimeters per second, a speed in the middle of the range they tested.

"In comparing the photographs of the crystals, it is not the longest, straightest structures that result in the best electrical characteristics," said Bao, "but the one with a shorter, yet highly consistent pattern."

New structures, new analyses

Bao's new semiconductor proved challenging in at least one other regard: Measurement and visualization of the lattices to understand how and why they work. To gain this understanding, she turned to Stefan Mannsfeld, PhD, a staff scientist and expert in x-ray scattering at Stanford Synchrotron Radiation Lightsource, a co-author of the paper.

"We have been able to improve how we analyze the relative brightness of the peaks we can see in x-ray diffraction images," said Mannsfeld. "Previously this was only possible when analyzing relatively big single crystals, but we have for the first time been able to duplicate this for very thin films of these crystals."

With improved analysis, the team was able to understand the physics behind the improvement. "Our analysis made it possible not only to see the impact of the strain on the lattice geometry, but also to determine the exact way in which the molecules pack in the lattice. As a result we obtained a better understanding of why such structures improve the molecule-to-molecule electrical coupling that improves the electrical efficiency," said Mannsfeld.

In the paper, Bao describes her new technique as general enough as to be applicable to other materials that might someday yield even better electrical characteristics in in a wide range of organic semiconductors.

Explore further: X-ray detector on plastic delivers medical imaging performance

Related Stories

SSRL Aids Development of Plastic Electronics

May 04, 2006

For close to a decade, researchers have been trying to improve the performance of plastic semiconductors to the level of amorphous silicon—the semiconductor used in low-cost electronics such as photovoltaic ...

Research helps overcome barrier for organic electronics

Nov 10, 2009

(PhysOrg.com) -- Electronic devices can't work well unless all of the transistors, or switches, within them allow electrical current to flow easily when they are turned on. A team of engineers has determined ...

Recommended for you

Simplicity is key to co-operative robots

5 hours ago

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Freight train industry to miss safety deadline

5 hours ago

The U.S. freight railroad industry says only one-fifth of its track will be equipped with mandatory safety technology to prevent most collisions and derailments by the deadline set by Congress.

IBM posts lower 1Q earnings amid hardware slump

6 hours ago

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.

Microsoft CEO is driving data-culture mindset

7 hours ago

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

User comments : 0

More news stories

Microsoft CEO is driving data-culture mindset

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...