Spring's rising soil temperatures see hormones wake seeds from their winter slumber

Dec 12, 2011

Dormant seeds in the soil detect and respond to seasonal changes in soil temperature by changing their sensitivity to plant hormones, new research by the University of Warwick has found.

This sensitivity alters the depth of dormancy, indicating to the seed when it is the right time of year to germinate and grow.

The seeds of common weeds can survive in the in a dormant state for years, in some cases decades, spelling issues for food security when they emerge to compete with crops.

New DEFRA-funded research by the University of Warwick sheds light on how hormones regulate the dormancy cycle of seeds in the soil using seeds of Arabidopsis - commonly known as Thale Cress - a close relative of many common weeds and .

The new insights, which come from combining modern with traditional seed ecology, could be of long-term help in reducing the use of herbicide on farms.

It is also of interest to those working to ensure biodiversity by understanding how dormancy and germination in is regulated.

Despite the importance of dormancy cycling in nature, very little is known about its regulation at the molecular level.

Professor Bill Finch-Savage and Dr Steve Footitt in the University of Warwick's School of Life Sciences looked at over the dormancy cycle of Arabidopsis seeds in field soils to see how it is affected by the seasons.

They found that gene sets related to dormancy and germination are highly sensitive to in .

A balance between the hormones abscisic acid (ABA) and gibberellic acid (GA) is thought to be central to controlling dormancy and germination,

One set of genes is regulated by ABA, which is linked to dormancy, whereas GA controls genes which act to increase the potential for germination.

Using an Arabidopsis strain whose seedlings emerge in late summer and early autumn, they found that as the soil warms up, seeds become less sensitive to ABA and more sensitive to GA, which brings them out of dormancy and spurs them towards germination.

Once dormancy starts to recede, increased sensitivity to light, nitrate and the differences between day and night temperatures play a bigger role in signalling that it is the right time to germinate.

Dr Footitt said: "Many will have seen how the amount of weeds in their garden differs with the weather from year to year.

"Understanding how this happens will help us to predict the impact that future climate change will have on our native flora and the weeds that compete with the crops we rely on for food."

"Our research sheds new light on how genetics and the environment interact in the dormancy cycling process.

"By looking at seeds over an annual cycle we now have a clearer idea of how sense and react to changes in the environment throughout the seasons so they know the best time to emerge into plants."

The research is published in the Proceedings of the National Academy of Sciences.

Professor Finch-Savage and Dr Footitt have been awarded a BBSRC grant to investigate further how climate has an impact on dormancy cycling and how genetics and the environment interact in the dormancy cycling process.

Explore further: Stanford researchers rethink 'natural' habitat for wildlife

More information: The paper, entitled Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways, can be found at www.pnas.org/content/early/2011/11/28/1116325108.full.pdf+html?with-ds=yes).

Related Stories

Recommended for you

Plants with dormant seeds give rise to more species

8 hours ago

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Scientists tether lionfish to Cayman reefs

18 hours ago

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...