Size matters: Sugars regulate communication between plant cells

Dec 12, 2011

Multicellular organisms must have a means for cells to communicate with one another. Past research has shown that plants possess the ability to directly transfer materials between adjacent cells, through holes in their cell walls called plasmodesmata (PD).

Now, a study published by Cell Press in the December issue of the journal Developmental Cell reveals one way to control the size of these PD channels, to prevent or allow the passage of important signals between cells, during plant development.

Although evidence suggests that plant cells have the ability to control the size of their PDs, and therefore regulate intercellular trafficking, it is not clear how this size control is orchestrated. "Previous research has suggested an important role for the plant sugar callose in regulating the PD aperture or size exclusion limit," explains the senior author of the study, Professor Ykä Helariutta, from the University of Helsinki in Finland. "For example, callose degradation enhances cell-to-cell movement and increased callose accumulation at the PD has been linked with impaired trafficking."

In their study, Professor Helariutta and colleagues developed genetic tools to control the amount of callose at the PD, so that they could manipulate the flow through PD in specific tissues of the plant. The researchers went on to show that these changes affected the intercellular movement of key plant development signaling molecules and therefore strongly influenced root formation. "Our results indicate that spatial and temporal control of callose production regulates the passage of signaling molecules through the PD during plant development," concludes Professor Helariutta.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.