Size matters: Sugars regulate communication between plant cells

Dec 12, 2011

Multicellular organisms must have a means for cells to communicate with one another. Past research has shown that plants possess the ability to directly transfer materials between adjacent cells, through holes in their cell walls called plasmodesmata (PD).

Now, a study published by Cell Press in the December issue of the journal Developmental Cell reveals one way to control the size of these PD channels, to prevent or allow the passage of important signals between cells, during plant development.

Although evidence suggests that plant cells have the ability to control the size of their PDs, and therefore regulate intercellular trafficking, it is not clear how this size control is orchestrated. "Previous research has suggested an important role for the plant sugar callose in regulating the PD aperture or size exclusion limit," explains the senior author of the study, Professor Ykä Helariutta, from the University of Helsinki in Finland. "For example, callose degradation enhances cell-to-cell movement and increased callose accumulation at the PD has been linked with impaired trafficking."

In their study, Professor Helariutta and colleagues developed genetic tools to control the amount of callose at the PD, so that they could manipulate the flow through PD in specific tissues of the plant. The researchers went on to show that these changes affected the intercellular movement of key plant development signaling molecules and therefore strongly influenced root formation. "Our results indicate that spatial and temporal control of callose production regulates the passage of signaling molecules through the PD during plant development," concludes Professor Helariutta.

Explore further: Students create microbe to weaken superbug

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

How calcium regulates mitochondrial carrier proteins

7 hours ago

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Precise measurements of microbial ecosystems

8 hours ago

The Luxembourg Centre for Systems Biomedicine (LCSB) has succeeded for the first time in describing the complex relationships within an ecosystem in unprecedented detail. For their work, carried out in collaboration ...

Students create microbe to weaken superbug

19 hours ago

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.