Silk microneedles deliver controlled-release drugs painlessly

December 21, 2011

Bioengineers at Tufts University School of Engineering have developed a new silk-based microneedle system able to deliver precise amounts of drugs over time and without need for refrigeration. The tiny needles can be fabricated under normal temperature and pressure and from water, so they can be loaded with sensitive biochemical compounds and maintain their activity prior to use. They are also biodegradable and biocompatible.

The research paper "Fabrication of Silk Microneedles for Controlled-Release Drug Delivery" appeared in December 2 online in advance of print.

The Tufts researchers successfully demonstrated the ability of the silk microneedles to deliver a large-molecule, enzymatic model drug, horseradish peroxidase (HRP), at controlled rates while maintaining . In addition, silk microneedles loaded with tetracycline were found to inhibit the growth of , demonstrating the potential of the microneedles to prevent local infections while also delivering therapeutics.

"By adjusting the post-processing conditions of the silk protein and varying the drying time of the silk protein, we were able to precisely control the drug release rates in laboratory experiments," said Fiorenzo Omenetto, Ph.D., senior author on the paper. "The new system addresses long-standing drug delivery challenges, and we believe that the technology could also be applied to other biological ."

The Drug Delivery Dilemma

While some drugs can be swallowed, others can't survive the . Hypodermic injections can be painful and don't allow a slow release of medication. Only a limited number of small-molecule drugs can be transmitted through transdermal patches. Microneedles—no more than a micron in size and able to penetrate the upper layer of the skin without reaching nerves—are emerging as a painless new drug delivery mechanism. But their development has been limited by constraints ranging from harsh manufacturing requirements that destroy sensitive biochemicals, to the inability to precisely control drug release or deliver sufficient drug volume, to problems with infections due to the small skin punctures.

The process developed by the Tufts bioengineers addresses all of these limitations. The process involves ambient pressure and temperature and aqueous processing. Aluminum microneedle molding masters were fabricated into needle arrays of about 500 µm needle height and tip radii of less than 10 µm. The elastomer polydimethylsiloxane (PDMS) was cast over the master to create a negative mold; a drug-loaded silk protein solution was then cast over the mold. When the silk was dry, the drug-impregnated silk microneedles were removed. Further processing through water vapor annealing and various temperature, mechanical and electronic exposures provided control over the diffusity of the silk microneedles and drug release kinetics.

"Changing the structure of the secondary enables us to 'pre-program' the properties of the with great precision," said David L. Kaplan, Ph.D., coauthor of the study, chair of biomedical engineering at Tufts and a leading researcher on silk and other novel biomaterials. "This is a very flexible technology that can be scaled up or down, shipped and stored without refrigeration and administered as easily as a patch or bandage. We believe the potential is enormous."

Explore further: Microneedles enhance drug administration through skin

More information: Tsioris, K., Raja, W. K., Pritchard, E. M., Panilaitis, B., Kaplan, D. L. and Omenetto, F. G. (2011), Fabrication of Silk Microneedles for Controlled-Release Drug Delivery. Advanced Functional Materials. doi: 10.1002/adfm.201102012

Related Stories

Microneedles enhance drug administration through skin

February 4, 2008

In what is believed to be the first peer-reviewed study of its kind involving human subjects, researchers at the University of Kentucky College of Pharmacy and the Georgia Institute of Technology have demonstrated that patches ...

Microneedles Could Replace Syringe

March 10, 2008

The common needle phobia and painful injections could soon be a thing of the past, thanks to a revolutionary new drug-delivery technique developed by a team at the Georgia Institute of Technology, US. The long-practiced method ...

Silk-based optical waveguides meet biomedical needs

August 31, 2009

There is a growing need for biocompatible photonic components for biomedical applications - from in vivo glucose monitoring to detecting harmful viruses or the telltale markers of Alzheimer's. Optical waveguides are of ...

New pump created for microneedle drug-delivery patch

September 1, 2010

( -- Purdue University researchers have developed a new type of pump for drug-delivery patches that might use arrays of "microneedles" to deliver a wider range of medications than now possible with conventional ...

Recommended for you

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Anti-aging treatment for smart windows

October 1, 2015

Electrochromic windows, so-called 'smart windows', share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University have now worked out an entirely new way to rejuvenate ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Dec 21, 2011
Preeeety cool. Could be used for nefarious purposes quite easily as well.
1 / 5 (1) Dec 21, 2011
No more screaming babies getting vaccinations.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.