Sewage treatment plants may contribute to antibiotic resistance problem

Dec 07, 2011
Sewage treatment plants may contribute to antibiotic resistance problem

Water discharged into lakes and rivers from municipal sewage treatment plants may contain significant concentrations of the genes that make bacteria antibiotic-resistant. That's the conclusion of a new study on a sewage treatment plant on Lake Superior in the Duluth, Minn., harbor that appears in ACS' journal Environmental Science & Technology.

Timothy M. LaPara and colleagues explain that antibiotic-resistant bacteria — a major problem in medicine today — are abundant in the sewage that enters municipal wastewater treatment plants. Treatment is intended to kill the bacteria, and it removes many of the bacterial that cause antibiotic resistance. However, genes or bacteria may be released in effluent from the plant. In an effort to determine the importance of municipal sewage treatment plants as sources of antibiotic resistance genes, the scientists studied releases of those genes at the Duluth facility.

Although the Duluth facility uses some of the most advanced technology for cleaning wastewater — so-called tertiary treatment — the study identified it as an important source of antibiotic resistance genes. Sampling of water at 13 locations detected three genes, for instance, that make bacteria resistant to the tetracycline group of antibiotics, which are used to treat conditions ranging from acne to sexually transmitted diseases to anthrax and bubonic plague. LaPara's team says their research demonstrates that even the most high-tech may be significant sources of antibiotic resistance genes in waterways.

Explore further: Ibuprofen posing potential threat to fish

More information: Tertiary-Treated Municipal Wastewater is a Significant Point Source of Antibiotic Resistance Genes into Duluth-Superior Harbor, Environ. Sci. Technol., 2011, 45 (22), pp 9543–9549. DOI: 10.1021/es202775r

Abstract
In this study, the impact of tertiary-treated municipal wastewater on the quantity of several antibiotic resistance determinants in Duluth-Superior Harbor was investigated by collecting surface water and sediment samples from 13 locations in Duluth-Superior Harbor, the St. Louis River, and Lake Superior. Quantitative PCR (qPCR) was used to target three different genes encoding resistance to tetracycline (tet(A), tet(X), and tet(W)), the gene encoding the integrase of class 1 integrons (intI1), and total bacterial abundance (16S rRNA genes) as well as total and human fecal contamination levels (16S rRNA genes specific to the genus Bacteroides). The quantities of tet(A), tet(X), tet(W), intI1, total Bacteroides, and human-specific Bacteroides were typically 20-fold higher in the tertiary-treated wastewater than in nearby surface water samples. In contrast, the quantities of these genes in the St. Louis River and Lake Superior were typically below detection. Analysis of sequences of tet(W) gene fragments from four different samples collected throughout the study site supported the conclusion that tertiary-treated municipal wastewater is a point source of resistance genes into Duluth-Superior Harbor. This study demonstrates that the discharge of exceptionally treated municipal wastewater can have a statistically significant effect on the quantities of antibiotic resistance genes in otherwise pristine surface waters.

add to favorites email to friend print save as pdf

Related Stories

Small amounts of antibiotics generate big problems

Jul 22, 2011

New research conducted at Uppsala University shows that extremely low concentrations of antibiotics can enrich for antibiotic resistant bacteria. The research suggests that antibiotic residue introduced to the environment ...

Antibiotic resistant bacteria found in fertilizer

May 29, 2009

Vancomycin resistant enterococci (VRE) have been found in sewage sludge, a by-product of waste-water treatment frequently used as a fertilizer. Researchers writing in the open access journal Acta Veterinaria Scandinavica point out the ...

Newly discovered reservoir of antibiotic resistance genes

Oct 21, 2011

Waters polluted by the ordure of pigs, poultry, or cattle represent a reservoir of antibiotic resistance genes, both known and potentially novel. These resistance genes can be spread among different bacterial species by bacteriophage, ...

Recommended for you

Coal gas boom in China holds climate change risks

4 hours ago

Deep in the hilly grasslands of remote Inner Mongolia, twin smoke stacks rise more than 200 feet into the sky, their steam and sulfur billowing over herds of sheep and cattle. Both day and night, the rumble ...

Water crisis threatens thirsty Sao Paulo

12 hours ago

Sao Paulo is thirsty. A severe drought is hitting Brazil's largest city and thriving economic capital with no end in sight, threatening the municipal water supply to millions of people.

User comments : 0