Scientists create a functional model of the extracellular matrix

December 20, 2011

Scientists at the National Physical Laboratory (NPL) have created a functional model of the native extracellular matrix that provides structural support to cells to aid growth and proliferation. The model could lead to advances in regenerative medicine.

The extracellular matrix (ECM) provides the physical and chemical conditions that enable the development of all . It is a complex nano-to-microscale structure made up of protein fibres and serves as a dynamic substrate that supports and regeneration.

Man-made structures designed to mimic and replace the native matrix in damaged or diseased tissues are highly sought after to advance our understanding of tissue organisation and to make regenerative medicine a reality.

Self-assembling peptide fibres that have similar properties to those of the native matrices are of particular interest. However, these near-crystalline fail to arrange themselves into interconnected meshes at the , which is critical for bringing cells together and supporting .

To solve this problem, a research team at NPL designed a small protein consisting of two complementary domains (structural units) that promote the formation of highly branched networks of fibres that span microscopic dimensions. The team showed that the created matrix is very efficient in supporting cell attachment, growth and proliferation.

Max Ryadnov, the lead researcher at NPL, said: "The extracellular matrix is a cellular "scaffolding", which provides necessary signalling environment for cell growth and development into tissues and can help to heal wounds and other damaged tissues. Therefore, extracellular mimetics such as one developed by NPL could be useful for the progress of regenerative medicine."

Explore further: Coming Soon: Blood Vessels from a Test Tube?

More information: The full research was published recently in Angewandte Chemie. It is available here: onlinelibrary.wiley.com/doi/10.1002/anie.201104647/abstract

Related Stories

Coming Soon: Blood Vessels from a Test Tube?

June 4, 2007

Our tissues and organs consist of a complex, closely balanced assembly of different types of cells, extracellular matrix, and special signal-carrying molecules. The growth of such structures in the laboratory, perhaps for ...

Hydrogels provide scaffolding for growth of bone cells

August 17, 2008

Hyaluronic hydrogels developed by Carnegie Mellon University researchers may provide a suitable scaffolding to enable bone regeneration. The hydrogels, created by Newell Washburn, Krzysztof Matyjaszewski and Jeffrey Hollinger, ...

The extracellular matrix

December 12, 2011

NPL scientists have created a functional model of the native extracellular matrix which provides structural support to cells to aid growth and proliferation and could lead to advances in regenerative medicine.

Recommended for you

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Naturally-occurring protein enables slower-melting ice cream

August 31, 2015

(Phys.org)—Scientists have developed a slower-melting ice cream—consider the advantages the next time a hot summer day turns your child's cone with its dream-like mound of orange, vanilla and lemon swirls with chocolate ...

Antibody-making bacteria promise drug development

August 31, 2015

Monoclonal antibodies, proteins that bind to and destroy foreign invaders in our bodies, routinely are used as therapeutic agents to fight a wide range of maladies including breast cancer, leukemia, asthma, arthritis, psoriasis, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.