Resequencing 50 accessions of rice cast new light on molecular breeding

Dec 11, 2011

BGI, the world's largest genomics organization, announced that a study on resequencing 50 accessions of cultivated and wild rice was published online today in Nature Biotechnology. The study provides one of the largest genome variation data sets for wild and cultivated rice, which is valuable for breeding and for identifying agronomically important genes in rice. This data also yields new insights for geneticists and biologists to deeply explore the domestication history of cultivated rice.

Rice feeds more than half the world's population, and accounts for over 20 percent of the world's total calorie intake. At various times and places in history, some wild rice species formed particularly close relationships with resulting in a range of biological and owning to a process known as domestication, a special artificial selection. This process has played an important role in with divergence of many genes controlling important agronomic traits.

Asian cultivated rice (Oryza sativa) is thought to have been domesticated from divergent populations of Asian wild rice, O. rufipogon and O. nivara, about 10,000 years ago. For decades, have tried various ways to identify the major responsible for the significant phenotypic traits changed during the domestication, such as grain size, color, shattering, seed dormancy, among others.

"If we want to clearly understand the genome variation between cultivated and wild rice, it's better to know the comprehensive catalog of genome variation in both cultivated and wild rice," said Xun Xu, Vice President of Research and Development Department at BGI, and the leading author of the paper. "The high-quality variation data will greatly facilitate the identification of functional variations and be useful for marker-assisted breeding and gene mapping of rice."

In this study, researchers sequenced 40 cultivated accessions selected from the major groups of Asian cultivated rice and 10 accessions of their wild progenitors. They next investigated genome-wide variation patterns in rice and obtained 6.5 million high-quality single nucleotide polymorphisms (SNPs).

"This is one of the largest high-quality SNP data sets obtained in rice," said Xin Liu, Senior Bioinformatician of BGI and the co-leading author of this paper. "It could provide molecular markers for designing rice SNP arrays and for breeding to identify important rice genes that could potentially improve the quality and yield of rice."

Because of the low levels of variation and skewed allele frequency spectra, some favorable alleles associated with important biological features tend to be rare and are difficult to detect. Using these population SNP data, researchers successfully identified thousands of genes with significantly lower diversity in cultivated but not in , which indicated the candidate regions were selected during domestication. The validity of this approach was further evidenced by the successful identification of the two well-known rice domestication genes, prog1 and sh4. In addition, the results also support the view that japonica and indica, two major subspecies of cultivated rice, were independently domesticated, and further suggest japonica was domesticated from the Chinese strain of O. rufipogon.

"The millions of SNP data generated in this study not only provide tremendous opportunity to unravel the domestication history of rice, but they also could serve as a valuable source for researchers to rapidly identify agronomically important genes in rice," said Xu. "We hope that this new data accelerates the global effort to improve the quality and yield of in order to better address the challenges of a growing world population and food shortages. "

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

Early agricultural piracy informs the domestication of rice

Jun 09, 2011

The origins of rice have been cast in a new light by research publishing in the open-access journal PLoS Genetics on June 9, 2011. By reconciling two theories, the authors show that the domestication of rice occurred at lea ...

Gene's past could improve the future of rice

Jan 23, 2009

( -- In an effort to improve rice varieties, a Purdue University researcher was part of a team that traced the evolutionary history of domesticated rice by using a process that focuses on one gene.

Rice that 'Snaps, Crackles and Pops' with Protein

Jan 14, 2008

Scientists in the United States and India are reporting development of a high-protein variety of rice, dietary staple for half the world’s population. The study is scheduled for the Jan. 23 issue of ACS’ Journal of Agricultural an ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.