Proton beam experiments open new areas of research

Dec 05, 2011
The Trident laser at Los Alamos National Laboratory.

By focusing proton beams using high-intensity lasers, a team of scientists have discovered a new way to heat material and create new states of matter in the laboratory.

Researchers from Lawrence Livermore National Laboratory; the Jacobs School of Engineering at the University of California, San Diego; Los Alamos National Laboratory; Hemoltz-Zentrum Dresden-Rossendorf of Germany; Technische Universitat Darmstadt of Germany, and of San Diego unveiled new findings about how proton beams can be used in myriad applications.

Using the Trident sub-picosecond laser at Los Alamos, the team generated and focused a using a cone-shaped target. The protons were found to have unexpected curved trajectories due to the large electric fields in the beam. A sheath electric field also channeled the proton beam through the cone tip, substantially improving the beam focus.

"These results agree well with our particle simulations and provide the physics basis for many future applications," said Mark Foord, one of the LLNL scientists on the team.

Other Livermore researchers include lead author Teresa Bartal (also a UCSD Ph.D student and Lawrence scholar), Claudio Bellei, Michael Key, Pravesh Patel, Drew Higginson and Harry McLean. The research appears in the Dec. 4 issue of the journal, .

Bartal said the experiments uncover a new understanding of the physics involved in proton focusing, which affects how proton beams can be used in the future -- from heating material to creating new types of matter that couldn't be made by any other means, to medical applications and insights into planetary science.

"The ability to generate high-intensity well-focused proton beams can open the door to new regimes in high-energy density science," Bartal said.

One example includes focusing a proton beam on a solid density or compressed material creating millions of atmospheres of pressure, allowing the study of the properties of warm dense matter found in the interior of giant planets such as Jupiter.

The UCSD team was led by Farhat Beg of Jacobs School of Engineering and several of his students participated in this experiment.

"This work has given a new direction to the conventional thinking of proton beam focusing in short-pulse laser matter interaction," Beg said. "Surely it will impact heating of pre-compressed materials to temperatures observed at the core of the sun and any future applications in proton oncology using high-intensity lasers."

Laser-produced proton beams also are making an impact on medical applications such as isotope production for positron emission tomography (PET) and proton oncology.

Explore further: And so they beat on, flagella against the cantilever

add to favorites email to friend print save as pdf

Related Stories

Ion beams might one day fight cancer tumors

Jan 26, 2006

Nonsurgical cancer therapy that destroys tumors but leaves healthy surrounding tissue intact could be available at every hospital if research reported this week in the journal Nature eventually comes to fruition.

New tool for proton spin

May 06, 2011

How the particles that constitute a proton give rise to is to its rotation, or ‘spin’, is an intriguing open question of contemporary particle physics. A technique that could provide some answers ...

Applying particle physics expertise to cancer therapy

May 13, 2011

(PhysOrg.com) -- Physicists at the University of California, Santa Cruz, are working with medical researchers at Loma Linda University Medical Center to develop a new imaging technology to guide proton therapy ...

New Physics Device May Revolutionize Cancer Treatment

Jul 17, 2007

Using innovative physics, researchers have proposed a system that may one day bring proton therapy, a state-of-the-art cancer treatment method currently available only at a handful of centers, to radiation ...

Recommended for you

And so they beat on, flagella against the cantilever

Sep 16, 2014

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

Sep 16, 2014

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 0