Researcher peers into universe's ancient past to better know how stars form

Dec 07, 2011

(PhysOrg.com) -- It takes light from our closest star, the Sun, about eight minutes to reach Earth. But light that leaves stars in distant galaxies takes a lot more time to reach our planet — billions of years more.

Greg Rudnick, assistant professor of physics at the University of Kansas, is observing one of the earliest known clusters of galaxies, which is 10 billion light years away. Because of this “trick” of nature, he is getting a snapshot of the universe when it was 10 billion years younger than it is today, or only about 4 billion years after the Big Bang. For the KU researcher, this period is vital because it saw the highest pace of in forming galaxies.

“If we look at galaxies that are 9 or 10 billion light years away, we’re seeing them when the universe was only 20 or 30 percent of its current age,” said Rudnick. “We’re literally looking back in time. So we can look at galaxies back then and measure how many stars were in each of them — and see that galaxies back then were forming stars at a much higher rate.”

Rudnick makes his observations using the Expanded Very Large Array — a vast radio astronomy observatory in New Mexico. The EVLA, consisting of 27 82-foot diameter antennas, was made famous in the movie “Contact.”

The radio telescope array will allow Rudnick to gauge the abundance of molecular gasses present in a cluster of seven galaxies. “Stars form from clouds of molecular gas. So measuring how much molecular gas there is tells us what the fuel supply for star formation was in young galaxies,” Rudnick said.

He will conduct some of the deepest-ever observations of carbon monoxide gas in the distant universe. Carbon dioxide is an easy-to-detect molecule that is a telltale sign of molecular hydrogen, the chief building block of new stars.

“We want to measure how much gas there is,” said Rudnick. “We want to measure how long that fuel supply will last given the rate in which it’s forming new . Is the gas enough to supply it for a long time, or is it about to shut off? By looking at the motion of these gas molecules, we can figure how fast the gas in the galaxy is moving around, and that in turn will tell us how much total mass there is in the galaxy.”

Because many galaxies are in a small area of the sky, Rudnick can observe multiple objects at once, which make his observations especially efficient. The observation of the cluster will break new ground in understanding how the fueling of star formation is altered when many galaxies are bound to each other by their mutual gravitational force.

“The prediction of galaxy formation models is that the gas supply of is cut off when they fall into these clusters. These observations will give us the first test of this in the distant universe,” said Rudnick.

Explore further: Computers beat brainpower when it comes to counting stars

Provided by University of Kansas

4 /5 (1 vote)

Related Stories

Survey Reveals Building Block Process For Biggest Galaxies

Apr 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope ...

Milky Way in mid-life crisis

May 25, 2011

(PhysOrg.com) -- The Milky Way is suffering from a mid-life crisis with most of its star formation behind it, new research from Swinburne University of Technology has shown.

'Teenage'-galaxies booming with star births

Oct 12, 2010

Scientists from the Niels Bohr Institute have been studying distant galaxies, which are among the most active star-forming galaxies in the Universe. They form around 1,000 new stars a year – a 1,000 times ...

Herschel paints new story of galaxy evolution

Sep 13, 2011

(PhysOrg.com) -- ESA's Herschel infrared space observatory has discovered that galaxies do not need to collide with each other to drive vigorous star birth. The finding overturns this long-held assumption ...

Recommended for you

ESO image: A study in scarlet

14 hours ago

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

Apr 15, 2014

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Pushy neighbors force stellar twins to diverge

Apr 15, 2014

(Phys.org) —Much like an environment influences people, so too do cosmic communities affect even giant dazzling stars: Peering deep into the Milky Way galaxy's center from a high-flying observatory, Cornell ...

Image: Multiple protostars within IRAS 20324+4057

Apr 14, 2014

(Phys.org) —A bright blue tadpole appears to swim through the inky blackness of space. Known as IRAS 20324+4057 but dubbed "the Tadpole", this clump of gas and dust has given birth to a bright protostar, ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (2) Dec 08, 2011
Congratulations, Greg Rudnick!

Observing light from galaxies 10 billion light years away will provide information on the universe when it was 10 billion years younger, ~4 Gyr after the supposed Big Bang "when the universe was only 20 or 30 percent of its current age.

If "stars form from clouds of molecular gas" - as assumed - then "galaxies back then were forming stars at a much higher rate.

But if the rate of expansion of the universe is in fact increasing because galaxies of stars form by fragmentation of the compact nuclear core at the center of each galaxy [1,2], then the stellar birth rate may have been lower 10 Gyr ago.

1."Neutron Repulsion", The APEIRON Journal, in press (2011)

http://arxiv.org/...2.1499v1

2. "Is the Universe Expanding?" The Journal of Cosmology 13, 4187-4190 (2011)

http://journalofc...102.html

With kind regards,
Oliver K. Manuel
Former NASA Principal
Investigator for Apollo
http://www.omatumr.com
jsdarkdestruction
3 / 5 (2) Dec 09, 2011
But if the rate of expansion of the universe is in fact increasing because galaxies of stars form by fragmentation of the compact nuclear core at the center of each galaxy [1,2], then the stellar birth rate may have been lower 10 Gyr ago.

Thats a pretty big IF there that has nothing to back it up other than your own rambling about neutron repulsion.

More news stories

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Red moon at night; stargazer's delight

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.