Researchers learn how pathogen causes speck disease

Dec 15, 2011
The crystal structure of the AvrPtoB-BAK1 complex is shown superimposed on a tomato leaf that has symptoms of bacterial speck disease.

(PhysOrg.com) -- Researchers have discovered how the structure of a protein allows a certain bacteria to interfere with the tomato plant's immune system, causing bacterial speck disease.

The work helps explain how Pseudomonas syringae, a , has evolved to cause disease and may open the door to breeding tomato varieties that are resistant to speck disease, which can prompt costly losses in tomato crops.

The research -- conducted at the Boyce Thompson Institute for Plant Science (BTI) at Cornell in conjunction with scientists at Tsinghua University in Beijing -- is published in the December issue of the .

"Our work presents clear evidence of a molecular arms race or coevolution between a host plant and a pathogen," said Greg Martin, an expert on tomato disease resistance at the Cornell-affiliated BTI, a Cornell professor of and plant-microbe biology, and lead author of the paper.

The paper describes the crystal structure of AvrPtoB -- a protein injected into plant cells by Pseudomonas syringae that interferes with the plant immune response and allows the bacteria to multiply. The paper also provides an understanding of how AvrPtoB binds and interferes with the BAK1, which acts with immune receptors to activate plant defenses.

Some tomato varieties are able to resist infection by Pseudomonas syringae because they express proteins Fen and Pto, which detect AvrPtoB and mount a defense.

The structures characterized in Martin's research revealed that two domains of AvrPtoB have a structural similarity, suggesting they arose from an ancestral avrPtoB gene. The paper also identifies part of BAK1 that is structurally similar to the defense protein Pto.

Explore further: Research traces the genetic print of the Asturian people

add to favorites email to friend print save as pdf

Related Stories

Bacteria surrenders plant war secrets

Jul 13, 2006

U.S. scientists say they've discovered the secret weapon of bacteria -- the way they secure a foothold in plants to launch an invasion.

Tomato stands firm in face of fungus

May 09, 2008

Scientists at the University of Amsterdam have discovered how to keep one’s tomatoes from wilting – the answer lies at the molecular level. The story of how the plant beat the pathogen, and what it means for combating ...

Two genes better than one for important plant pest

Feb 01, 2011

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have revealed a novel molecular mechanism that triggers plant infection by Pseudomonas syringae, the bacteria responsible for bacter ...

Recommended for you

Gene removal could have implications beyond plant science

3 minutes ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

14 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

Drought hormones measured

14 hours ago

Floods and droughts are increasingly in the news, and climate experts say their frequency will only go up in the future. As such, it is crucial for scientists to learn more about how these extreme events affect plants in ...

User comments : 0

More news stories

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...