NIST sensor improvement brings analysis method into mainstream

Dec 21, 2011

(PhysOrg.com) -- An advance in sensor design by researchers at the National Institute of Standards and Technology and the University of Waterloo's Institute of Quantum Computing (IQC) could unshackle a powerful, yet high-maintenance technique for exploring materials. The achievement could expand the technique—called neutron interferometry—from a test of quantum mechanics to a tool for industry as well.

Neutron beams can be used in dozens of ways to probe complex molecules and other advanced materials, but few of the analysis techniques require as much care as neutron interferometry. The technique treats neutrons as waves—a feature of quantum mechanics—and measures how the neutron is altered as it passes through a sample material. The results can reveal a variety of details about the magnetic, nuclear and structural properties of the sample. Neutron interferometry is extremely sensitive, but it carries a price: the instruments are so exquisitely sensitive to vibration and temperature that they must be built in a blockhouse the size of a garage, where they can be shielded from seismic activity and maintained at temperatures that are stable to within a few thousandths of a degree Celsius.

This video is not supported by your browser at this time.

The team, working at the NIST Center for Neutron Research (NCNR), found a way to sidestep many of these requirements and render the interferometer much more tolerant of change. The heart of a classic neutron interferometer is a small piece of silicon about the size of a soda can, precisely machined so that three thin walls of silicon jut upwards from its surface. These walls diffract the neutron beam, splitting it in two, sending one part through the sample, and then recombining them. Interference patterns in the output reveal how the neutrons were affected by the sample. The recent innovation is to add an extra wall in a way that increases the overall symmetry of the interferometer.

"By adding a fourth vane to the usual three, we were effectively able to cancel out the effect of many disturbances," says Michael Huber of the NIST research team. "It will allow us to create a device that can be housed in a box the size of a large charcoal grill that sits on the floor."

The advance, Huber says, means the new device can be much closer to the neutron source, delivering more than 10 times as many neutrons on the sample as before and generating data that is far more accurate in a fraction of the time.

"A measurement that might have taken more than a week could be done in a matter of hours now," Huber says. "We can imagine our interferometer becoming more of a 'user facility' that industry and universities can book time on when needed, rather than the esoteric instrument it has been up to this point. This development in neutron interferometry demonstrates that quantum technologies have the potential to emerge from academia to help build practical devices for real-world applications."

Huber adds that the NCNR will still maintain the original blockhouse-style instrument for certain types of interferometry work, but will augment it with the new device, which could start taking measurements when the NCNR resumes neutron production after its expansion project is complete in February 2012.

Explore further: A two-stage trap for single protons leads to measurement of their magnetic properties

More information: D.A. Pushin, M.G. Huber, M. Arif and D.G. Cory. Experimental realization of decoherence-free subspace in neutron interferometry. Physical Review Letters. 107, 150401 (2011), DOI: 10.1103/PhysRevLett.107.150401

Related Stories

Nanotechnologists Gain Powerful New Materials Probe

Feb 25, 2009

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology and The Johns Hopkins University have constructed a unique tool for exploring the properties of promising new materials with ...

Turning a nuclear spotlight on illegal weapons material

Oct 27, 2006

Researchers at the National Institute of Standards and Technology (NIST) and Oak Ridge National Laboratory (ORNL) have demonstrated that they can cheaply, quickly and accurately identify even subnanogram amounts of weapon-grade ...

New detector can 'see' single neutrons over broad range

Mar 10, 2008

Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a new optical method that can detect individual neutrons and record them over a range ...

New Way of 'Seeing': A 'Neutron Microscope'

Jul 30, 2004

A prototype microscope that uses neutrons instead of light to "see" magnified images has been demonstrated at the National Institute of Standards and Technology (NIST). Neutron microscopes might eventually offer ...

R&D 100 Award for new NIST/UMD neutron detector

Jul 10, 2008

A new ultrasensitive, high bandwidth neutron detector developed by the National Institute of Standards and Technology (NIST) and the University of Maryland (UMD) will receive one of this year's "R&D 100 Awards," ...

Recommended for you

50-foot-wide Muon g-2 electromagnet installed at Fermilab

Jul 31, 2014

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

User comments : 0