Modifications to chromosomal proteins help ensure that brain-specific sugars are produced only in appropriate tissues

December 16, 2011
Figure 1: Neural cell-specific modifications to chromosomal proteins govern the production of Gnt-IX and thereby ensure that branched O-mannose glycan production is restricted to these cells. Credit: 2011 iStockphoto/sitox

Many proteins are adorned with carbohydrate chains called glycans that can dramatically alter their stability, localization or function. These diverse sugars are assembled and modified by a variety of glycosylating enzymes, with some glycans exclusively manufactured within specific organs or tissues.

The β1,6-branched O-mannosyl glycan appears only in the mammalian brain. Naoyuki Taniguchi’s team at the RIKEN Advanced Science Institute in Wako recently characterized the , N-acetylglucosaminyltransferase IX (GnT-IX, also called GnT-Vb) that produces this particular glycan variant1 (Fig. 1). “We knew that some glycan-synthesizing enzymes are expressed in restricted tissues, but did not know how they are expressed,” says Yasuhiko Kizuka, a researcher in Taniguchi’s laboratory. “This led us to investigate how GnT-IX is specifically expressed in the brain.” 

Many genes are regulated by so-called ‘epigenetic mechanisms’, in which gene expression is modulated via modification of the histone scaffold that supports chromosomal DNA, and the researchers began by examining this possibility. When histone proteins undergo a modification known as acetylation, nearby genes are typically activated; conversely, removal of this acetylation has an inhibitory effect. 

Taniguchi and colleagues determined that the gene encoding GnT-IX is typically maintained in an inactive, non-acetylated state in 3T3-L1, a cell line derived from the fibroblasts that form connective . However, when the researchers treated these cells with a drug that promotes histone acetylation, they strongly expressed GnT-IX. The brain tumor-derived Neuro2A cell line, however, naturally expresses high levels of GnT-IX. The researchers found that these cells normally maintain the chromatin near this gene in a state that stimulates activation.

In subsequent experiments, Kizuka and Taniguchi not only identified specific DNA sequences that directly regulate GnT-IX activity, but also two proteins that bind to these sites to drive expression. They found one of these factors, CTCF, in both 3T3-L1 and Neuro2A cells, but its recruitment to the GnT-IX gene was far stronger under the favorable histone modification conditions found in the latter cells. 

Intriguingly, a preliminary screen of four other glycosylation enzymes suggested that similar mechanisms govern their tissue-specificity. “Our work suggests that expression of many other glyco-genes could be regulated epigenetically,” says Kizuka.

In future studies, the researchers intend to explore how this regulatory mechanism plays into the bigger picture of glycan function. “Our group has been trying to elucidate the ‘glycan cycle’—how glycans are dynamically synthesized, play diverse roles and are degraded—using a systems biology approach,” says Kizuka. “This work tells us that epigenetic regulation is a part of this cycle.”

Explore further: Researchers identify key enzyme that regulates the early growth of breast cancer cells

More information: Kizuka, Y., et al. Brain-specific expression of N-acetylglucosaminyltransferase IX (GnT-IX) is regulated by epigenetic histone modifications. The Journal of Biological Chemistry published online, 19 July 2011. doi: 10.1074/jbc/M111.251173

Related Stories

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.