New leads on mechanisms that confer virulence to E.coli-type bacteria

December 9, 2011
The image show the structure of protein Ler in complex with DNA. Credit: IRB Barcelona. Miquel Pons Lab

A team headed by scientists from the IRB Barcelona reports how the protein Ler, which is found in pathogenic bacteria, interacts with certain DNA sequences, thereby activating numerous genes responsible for virulence, which bacteria then exploit to infect human cells. Ler is present in pathogenic Escherichia coli strains, such as the one that caused a deadly infectious outbreak in Germany last May. The study is published in the scientific journal PloS Pathogens.

The researchers have solved the three-dimensional structure of a key region of the DNA-protein complex. Knowledge about the structures that control the activity of genes associated with virulence and resistance to antibiotics is crucial to understand the that regulate bacterial pathogenicity and to pave the way for alternative treatments to conventional antibiotics. According to Jesús García, research associate in the IRB Barcelona group headed by Miquel Pons, researcher at IRB Barcelona and professor of the UB, "a strategy based on selective regulatory systems for genes responsible for virulence is particularly attractive because it could potentially minimize the adverse effects on our bacterial flora and reduce the selective pressure for the development of antibiotic resistance in bacteria".

Many of the genes responsible for virulence and resistance to antibiotics have been acquired through processes such as horizontal gene transfer (HGT). By means of this mechanism, bacteria incorporate genetic material from external sources such as bacteria or phages (viruses that affect bacteria). The correct regulation of HGT genes, in other words silencing when not required and coordinated activation to produce a beneficial effect, is crucial for the success of bacteria.

"The resolved structure has allowed us to understand the way in which Ler recognizes its DNA binding sites. Ler does not recognize specific sequences but local DNA structures. In our study we also tested whether this recognition mode is used by other proteins of the same family, such as H-NS", explains García. The Ler and H-NS proteins play a critical role in the regulation of genes acquired through HGT in pathogenic E. coli strains.

Explore further: Bacteria have their own immune system protecting against outside DNA

More information: Indirect DNA Readout by an H-NS Related Protein: Structure of the DNA Complex of the C-Terminal Domain of Ler. Tiago N. Cordeiro; Holger Schmidt; Cristina Madrid; Antonio Juárez; Pau Bernadó; Christian Griesinger; Jesus García; Miquel Pons. PLoS Pathog 7(11): e1002380. doi:10.1371/journal.ppat.1002380

Related Stories

How bugs avoid getting sick after sex

August 18, 2006

Scientists at the Institute of Food Research in Norwich revealed today how the promiscuous Salmonella bacterium protects itself from getting ill after acquiring foreign DNA through "sex" with other bacteria. This discovery ...

Resistant gut bacteria will not go away by themselves

June 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Antibiotics have long-term impacts on gut flora

November 1, 2010

Short courses of antibiotics can leave normal gut bacteria harbouring antibiotic resistance genes for up to two years after treatment, say scientists writing in the latest issue of Microbiology, published on 3 November.

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.