Development of 'matrix' material controlling differentiation of stem cells

Dec 22, 2011
Fabrication of stepwise tissue development-mimicking matrix materials which mimic the extracellular matrix during osteogenic and adipogenic differentiation of mesenchymal stem cells.

The Tissue Regeneration Materials Unit of the International Center for Materials Nanoarchitectonics, National Institute for Materials Science in Japan succeeded in developing a matrix material which can control the differentiation of stem cells for regenerative medicine.

In order to realize regenerative medicine, it is necessary to induce the differentiation of stem cells into specific cell types to reconstruct desirable tissues or organs to treat diseases and defects. Technique for controlling the differentiation of stem cells is the most critical aspect of this process. As one such technique, attention is now focused on the role of extracellular matrix (ECM) that surrounds cell in vivo and can influence stem cell differentiation. However, it has been difficult to fabricate ECM material mimicking the stepwise matrix because the ECM surrounding differentiating cells is very complicated and remodelled according to the stage of differentiation.

In this study, the research team succeeded in fabricating two types of matrix materials that mimic the dynamically changing ECM during . They are “stepwise osteogenesis-mimicking matrix” and “stepwise adipogenesis-mimicking matrix” which mimic the ECM when mesenchymal stem cells are differentiated to osteoblasts and adipocytes (fat cells). Using the two types of “stepwise development-mimicking matrix”, the researcher team also succeeded in controlling the osteogenic and adipogenic differentiation of mesenchymal stem cells. The results indicate that ECM plays an important role in controlling the balance of osteogenesis and adipogenesis of mesenchymal stem cells.

In the future, the stepwise tissue development-mimicking matrix is expected to play a key role in research aimed at elucidating the ECM functions on the differentiation of iPS cells, ES cells and other in regenerative medicine. These materials will also be useful in elucidating the disease mechanism of osteoporosis, which may be triggered by an unbalance of osteogenic differentiation and adipogenic .

The research results will be soon published online in Biomaterials.

Explore further: 'Hairclip' protein mechanism explained

Provided by National Institute for Materials Science

not rated yet
add to favorites email to friend print save as pdf

Related Stories

New 'control knobs' for stem cells identified

Dec 03, 2008

Natural changes in voltage that occur across the membrane of adult human stem cells are a powerful controlling factor in the process by which these stem cells differentiate, according to research published by Tufts University ...

Recommended for you

'Hairclip' protein mechanism explained

5 hours ago

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

Discovery in the fight against antibiotic-resistant bacteria

7 hours ago

For four years, researchers at Universite catholique de Louvain have been trying to find out how bacteria can withstand antibiotics, so as to be able to attack them more effectively. These researchers now understand how one ...

Stem cells born out of indecision

7 hours ago

Scientists at the University of Copenhagen have gained new insight into embryonic stem cells and how blocking their ability to make choices explains why they stay as stem cells in culture. The results have just been published ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.