Development of 'matrix' material controlling differentiation of stem cells

Dec 22, 2011
Fabrication of stepwise tissue development-mimicking matrix materials which mimic the extracellular matrix during osteogenic and adipogenic differentiation of mesenchymal stem cells.

The Tissue Regeneration Materials Unit of the International Center for Materials Nanoarchitectonics, National Institute for Materials Science in Japan succeeded in developing a matrix material which can control the differentiation of stem cells for regenerative medicine.

In order to realize regenerative medicine, it is necessary to induce the differentiation of stem cells into specific cell types to reconstruct desirable tissues or organs to treat diseases and defects. Technique for controlling the differentiation of stem cells is the most critical aspect of this process. As one such technique, attention is now focused on the role of extracellular matrix (ECM) that surrounds cell in vivo and can influence stem cell differentiation. However, it has been difficult to fabricate ECM material mimicking the stepwise matrix because the ECM surrounding differentiating cells is very complicated and remodelled according to the stage of differentiation.

In this study, the research team succeeded in fabricating two types of matrix materials that mimic the dynamically changing ECM during . They are “stepwise osteogenesis-mimicking matrix” and “stepwise adipogenesis-mimicking matrix” which mimic the ECM when mesenchymal stem cells are differentiated to osteoblasts and adipocytes (fat cells). Using the two types of “stepwise development-mimicking matrix”, the researcher team also succeeded in controlling the osteogenic and adipogenic differentiation of mesenchymal stem cells. The results indicate that ECM plays an important role in controlling the balance of osteogenesis and adipogenesis of mesenchymal stem cells.

In the future, the stepwise tissue development-mimicking matrix is expected to play a key role in research aimed at elucidating the ECM functions on the differentiation of iPS cells, ES cells and other in regenerative medicine. These materials will also be useful in elucidating the disease mechanism of osteoporosis, which may be triggered by an unbalance of osteogenic differentiation and adipogenic .

The research results will be soon published online in Biomaterials.

Explore further: For cells, internal stress leads to unique shapes

Provided by National Institute for Materials Science

not rated yet
add to favorites email to friend print save as pdf

Related Stories

New 'control knobs' for stem cells identified

Dec 03, 2008

Natural changes in voltage that occur across the membrane of adult human stem cells are a powerful controlling factor in the process by which these stem cells differentiate, according to research published by Tufts University ...

Recommended for you

For cells, internal stress leads to unique shapes

8 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

9 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

11 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...