Development of 'matrix' material controlling differentiation of stem cells

Dec 22, 2011
Fabrication of stepwise tissue development-mimicking matrix materials which mimic the extracellular matrix during osteogenic and adipogenic differentiation of mesenchymal stem cells.

The Tissue Regeneration Materials Unit of the International Center for Materials Nanoarchitectonics, National Institute for Materials Science in Japan succeeded in developing a matrix material which can control the differentiation of stem cells for regenerative medicine.

In order to realize regenerative medicine, it is necessary to induce the differentiation of stem cells into specific cell types to reconstruct desirable tissues or organs to treat diseases and defects. Technique for controlling the differentiation of stem cells is the most critical aspect of this process. As one such technique, attention is now focused on the role of extracellular matrix (ECM) that surrounds cell in vivo and can influence stem cell differentiation. However, it has been difficult to fabricate ECM material mimicking the stepwise matrix because the ECM surrounding differentiating cells is very complicated and remodelled according to the stage of differentiation.

In this study, the research team succeeded in fabricating two types of matrix materials that mimic the dynamically changing ECM during . They are “stepwise osteogenesis-mimicking matrix” and “stepwise adipogenesis-mimicking matrix” which mimic the ECM when mesenchymal stem cells are differentiated to osteoblasts and adipocytes (fat cells). Using the two types of “stepwise development-mimicking matrix”, the researcher team also succeeded in controlling the osteogenic and adipogenic differentiation of mesenchymal stem cells. The results indicate that ECM plays an important role in controlling the balance of osteogenesis and adipogenesis of mesenchymal stem cells.

In the future, the stepwise tissue development-mimicking matrix is expected to play a key role in research aimed at elucidating the ECM functions on the differentiation of iPS cells, ES cells and other in regenerative medicine. These materials will also be useful in elucidating the disease mechanism of osteoporosis, which may be triggered by an unbalance of osteogenic differentiation and adipogenic .

The research results will be soon published online in Biomaterials.

Explore further: Micro fingers for arranging single cells

Related Stories

New 'control knobs' for stem cells identified

Dec 03, 2008

Natural changes in voltage that occur across the membrane of adult human stem cells are a powerful controlling factor in the process by which these stem cells differentiate, according to research published by Tufts University ...

Recommended for you

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Detailed structure of human ribosome revealed

Apr 24, 2015

A team at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC - CNRS/Université de Strasbourg/Inserm) has evidenced, at the atomic scale, the three-dimensional structure of the complete ...

How to kill a protein

Apr 24, 2015

For decades scientists have been looking closely at how our cells make proteins. But the inverse is equally important: how cells kill them.

How RNA machinery navigates our genomic obstacle course

Apr 24, 2015

Once upon a time, scientists thought RNA polymerase—the molecule that kicks off protein synthesis by transcribing DNA into RNA—worked like a wind-up toy: Set it down at a start site in our DNA and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.