A major step forward towards drought tolerance in crops

Dec 19, 2011
Assaf Mosquna (standing) is a postdoctoral researcher working with Sean Cutler (seated), an associate professor of plant cell biology in the Department of Botany and Plant Sciences at UC Riverside. Credit: UCR Strategic Communications.

When a plant encounters drought, it does its best to cope with this stress by activating a set of protein molecules called receptors. These receptors, once activated, turn on processes that help the plant survive the stress.

A team of plant has discovered how to rewire this to heighten the plants' response – a finding that can be used to engineer crops to give them a better shot at surviving and displaying increased yield under drought conditions.

The discovery, made in the laboratory of Sean Cutler, an associate professor of biology at the University of California, Riverside, brings drought-tolerant crops a step closer to becoming a reality.

It's the hormones

When plants encounter drought, they naturally produce abscisic acid, a stress hormone that helps them cope with the drought conditions. Specifically, the hormone turns on in the plants, resulting in a suite of beneficial changes that help the plants survive. These changes typically include guard cells closing on leaves to reduce water loss, cessation of plant growth to reduce water consumption and myriad other stress-relieving responses.

The discovery by Cutler and others of abscisic acid receptors, which orchestrate these responses, was heralded by Science magazine as a breakthrough of the year in 2009 due to the importance of the receptor proteins to drought and stress tolerance.

Tweaking the receptor

Working on Arabidopsis, a model plant used widely in plant biology labs, the Cutler-led research team has now succeeded supercharging the plant's stress response pathway by modifying the abscisic acid receptors so that they can be turned on at will and stay on.

"Receptors are the cell's conductors and the abscisic acid receptors orchestrate the specific symphony that elicits stress tolerance," said Cutler, a member of UC Riverside's Institute for Integrative Genome Biology. "We've now figured out how to turn the orchestra on at will."

He explained that each stress hormone receptor is equipped with a lid that operates like a gate. For the receptor to be in the on state, the lid must be closed. Using receptor genes engineered in the laboratory, the group created and tested through more than 740 variants of the stress hormone receptor, hunting for the rare variants that caused the lid to be closed for longer periods of time.

"We found many of these mutations," Cutler said. "But each one on its own gave us only partly what we were looking for. But when we carefully stacked the right ones together, we got the desired effect: the receptor locked in its on state, which, in turn, was able to activate the pathway in ."

Study results appear in tomorrow's (Dec. 20) issue of the Proceedings of the National Academy of Sciences.

Next, the research team plans to take this basic science from the lab into the field – a process that could take many years.

Explore further: Parasitic worm genomes: largest-ever dataset released

Related Stories

Growing drought-tolerant crops inching forward

Aug 25, 2010

A collaborative team of scientists led by researchers at The Medical College of Wisconsin, in Milwaukee, has used the tools of structural biology to understand how a synthetic chemical mimics abscisic acid (ABA), a key stress ...

A new role for cytokinin plant hormones

Sep 09, 2011

When plants, including crops, are exposed to environmental stresses such as drought or high salinity, abscisic acid (ABA), a stress-responsive hormone is synthesized to induce a protective response. At the same time, the ...

Recommended for you

Parasitic worm genomes: largest-ever dataset released

18 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Bitter food but good medicine from cucumber genetics

Nov 27, 2014

High-tech genomics and traditional Chinese medicine come together as researchers identify the genes responsible for the intense bitter taste of wild cucumbers. Taming this bitterness made cucumber, pumpkin ...

New button mushroom varieties need better protection

Nov 27, 2014

A working group has recently been formed to work on a better protection of button mushroom varieties. It's activities are firstly directed to generate consensus among the spawn/breeding companies to consider ...

Cataloguing 10 million human gut microbial genes

Nov 25, 2014

Over the past several years, research on bacteria in the digestive tract (gut microbiome) has confirmed the major role they play in our health. An international consortium, in which INRA participates, has developed the most ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Todecule
not rated yet Dec 20, 2011
Drought is obviously nothing new in the history of plant evolution. So why haven't the plants evolved this ability for heightened stress response on their own, if it does indeed allow them to survive better?

Perhaps it's a capability they once had but lost through domestication. Or do we just hope to be able to run the on/off switch for the stress response more intelligently than the plant would on it's own, thus giving it a better shot at surviving a particular drought event?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.