Largest ever gas mix caught in ultra-freeze trap

December 13, 2011

A team of scientists have made it easier to study atomic or subatomic-scale properties of the building blocks of matter (which also include protons, neutrons and electrons) known as fermions by slowing down the movement of a large quantity of gaseous atoms at ultra-low temperature. This is according to a study recently published in the European Physical Journal D as part of a cold quantum matter special issue, by researchers from the Paris-based École Normale Supérieure and the Non-Linear Institute at Nice Sophia-Antipolis University in France.

Thanks to the laser cooling method for which Claude Cohen-Tannoudji, Steven Chu and William D. Phillips received the Nobel Prize in 1997, Armin Ridinger and his colleagues succeeded in creating the largest Lithium 6 (6Li) and Potassium 40 (40K) gas mixture to date. The method used involved confining gaseous atoms under an ultra-high vacuum using electromagnetic forces, in an ultra-freeze trap of sorts.

This trap enabled them to load twice as many atoms than previous attempts at studying such gas mixtures, reaching a total on the order of a few billion atoms under study at a temperature of only a few hundred microKelvins (corresponding to a temperature near the absolute zero of roughly −273 C).

Given that the results of this study significantly increased the number of gaseous atoms under study, it will facilitate future simulation of subatomic-scale phenomena in gases. In particular, it will enable future experiments in which the gas mixture is brought to a so-called degenerate state characterised by particles of different species with very strong interactions. Following international efforts to produce the conditions to study subatomic-scale properties of matter under the quantum simulation program, this could ultimately help scientists to understand quantum mechanical phenomena occurring in neutron stars and so-called many-body problems such as high-temperature superconductivity.

Explore further: Nobel Prize-Winner Confirms UQ Quantum Physics Theory

More information: Ridinger A, Chaudhuri S, Salez T, Eismann U, Rio Fernandes D, Wilkowski D, Chevy F, and Salomon C (2011). Large atom number dual-species magneto-optical trap for fermionic 6Li and 40K atoms, European Physical Journal D (EPJ D), 65, 1-2. DOI: 10.1140/epjd/e2011-20069-4

Related Stories

Nobel Prize-Winner Confirms UQ Quantum Physics Theory

June 2, 2004

A novel quantum theory developed by University of Queensland, Australia researchers has been confirmed by recent experiments at a Nobel Prize-winning lab. Professor Bill Phillips’ Nobel Prize-winning group at the US National ...

Fahrenheit -459: Neutron stars and string theory in a lab

December 9, 2010

( -- Using lasers to contain some ultra-chilled atoms, a team of scientists has measured the viscosity or stickiness of a gas often considered to be the sixth state of matter. The measurements verify that this ...

An icy gaze into the Big Bang

March 18, 2011

( -- Scientists of the Institute for Quantum Optics and Quantum Information (IQOQI) in Innsbruck, Austria, have reached a milestone in the exploration of quantum gas mixtures. In an international first, the research ...

Recommended for you

Scientists paint quantum electronics with beams of light

October 9, 2015

A team of scientists from the University of Chicago and the Pennsylvania State University have accidentally discovered a new way of using light to draw and erase quantum-mechanical circuits in a unique class of materials ...

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.