Largest ever gas mix caught in ultra-freeze trap

December 13, 2011

A team of scientists have made it easier to study atomic or subatomic-scale properties of the building blocks of matter (which also include protons, neutrons and electrons) known as fermions by slowing down the movement of a large quantity of gaseous atoms at ultra-low temperature. This is according to a study recently published in the European Physical Journal D as part of a cold quantum matter special issue, by researchers from the Paris-based École Normale Supérieure and the Non-Linear Institute at Nice Sophia-Antipolis University in France.

Thanks to the laser cooling method for which Claude Cohen-Tannoudji, Steven Chu and William D. Phillips received the Nobel Prize in 1997, Armin Ridinger and his colleagues succeeded in creating the largest Lithium 6 (6Li) and Potassium 40 (40K) gas mixture to date. The method used involved confining gaseous atoms under an ultra-high vacuum using electromagnetic forces, in an ultra-freeze trap of sorts.

This trap enabled them to load twice as many atoms than previous attempts at studying such gas mixtures, reaching a total on the order of a few billion atoms under study at a temperature of only a few hundred microKelvins (corresponding to a temperature near the absolute zero of roughly −273 C).

Given that the results of this study significantly increased the number of gaseous atoms under study, it will facilitate future simulation of subatomic-scale phenomena in gases. In particular, it will enable future experiments in which the gas mixture is brought to a so-called degenerate state characterised by particles of different species with very strong interactions. Following international efforts to produce the conditions to study subatomic-scale properties of matter under the quantum simulation program, this could ultimately help scientists to understand quantum mechanical phenomena occurring in neutron stars and so-called many-body problems such as high-temperature superconductivity.

Explore further: Nobel Prize-Winner Confirms UQ Quantum Physics Theory

More information: Ridinger A, Chaudhuri S, Salez T, Eismann U, Rio Fernandes D, Wilkowski D, Chevy F, and Salomon C (2011). Large atom number dual-species magneto-optical trap for fermionic 6Li and 40K atoms, European Physical Journal D (EPJ D), 65, 1-2. DOI: 10.1140/epjd/e2011-20069-4

Related Stories

Nobel Prize-Winner Confirms UQ Quantum Physics Theory

June 2, 2004

A novel quantum theory developed by University of Queensland, Australia researchers has been confirmed by recent experiments at a Nobel Prize-winning lab. Professor Bill Phillips’ Nobel Prize-winning group at the US National ...

Fahrenheit -459: Neutron stars and string theory in a lab

December 9, 2010

(PhysOrg.com) -- Using lasers to contain some ultra-chilled atoms, a team of scientists has measured the viscosity or stickiness of a gas often considered to be the sixth state of matter. The measurements verify that this ...

An icy gaze into the Big Bang

March 18, 2011

(PhysOrg.com) -- Scientists of the Institute for Quantum Optics and Quantum Information (IQOQI) in Innsbruck, Austria, have reached a milestone in the exploration of quantum gas mixtures. In an international first, the research ...

Recommended for you

Possible case for fifth force of nature

May 26, 2016

A team of physicists at the University of California has uploaded a paper to the arXiv preprint server in which they suggest that work done by a team in Hungary last year might have revealed the existence of a fifth force ...

Doubling down on Schrödinger's cat

May 26, 2016

Yale physicists have given Schrödinger's famous cat a second box to play in, and the result may help further the quest for reliable quantum computing.

Optics breakthrough to revamp night vision

May 24, 2016

A breakthrough by an Australian collaboration of researchers could make infra-red technology easy-to-use and cheap, potentially saving millions of dollars in defense and other areas using sensing devices, and boosting applications ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.