Laboratory avalanches reveal behaviour of ice flows

December 15, 2011

(PhysOrg.com) -- Avalanches created in controlled laboratory environments are helping us to understand the potentially lethal processes that these natural disasters unleash.

In September 2002, one hundred million cubic metres of rock and ice separated from the northern slope of the Kazbek massif in North Ossetia, Russia. The resulting killed 125 people and caused widespread damage. Ice avalanches can travel great distances at speeds of up to 150 miles per hour, but it is not fully understood how they travel so far or so fast. The difficulty lies in observing the processes within avalanches closely. But by creating a laboratory avalanche one researcher at The University of Nottingham has helped us to understand how melting effects flows of ice — even at temperatures below freezing.

Dr Barbara Turnbull, a member of the Fluid and Particle Processes Group in the University’s Faculty of Engineering, has found that the same layer of liquid water at an ice particle’s surface that helps skaters to skate across an ice rink also enhances ice avalanche speeds. The water lubricates particle contacts, resulting in more collisions and melting, which in turn leads to a snowball effect of ever-faster speeds.

This video is not supported by your browser at this time.
A video of Dr Turnbull’s experiment.

To measure this effect Dr Turnbull half filled a narrow Perspex drum with flash-frozen water droplets, rotating it so that the droplets formed a slope down which the ice granules bounced and slipped — simulating ice avalanches.

“Ice avalanches from collapsing glaciers are not common in populated areas, but that may change as global temperatures rise. The Ossetia avalanche alerted researchers to the urgency of gaining a better understanding of the processes that control such flows,” Dr Turnbull said.

“This is a simple experiment, but it tests the theory that surface melting in particles as they collide plays a role in the speed at which avalanches travel — and therefore the amount of damage they can potentially inflict on the local environment and populations.”

Explore further: Arctic sea ice may be at 'tipping point'

Related Stories

Arctic sea ice may be at 'tipping point'

September 16, 2005

Arctic ice melting may have accelerated to a "tipping point" that will produce a vicious cycle of melting and heating, U.S. scientists say.

Avalanches -- triggered from the valley

December 2, 2008

Everybody knows that skiers swishing down steep slopes can cause extensive slab avalanches. But there is a less well known phenomenon: A person skiing a gentle slope in the valley triggers a slab avalanche on a steeper slope, ...

Greenland and Antarctic ice sheet melting, rate unknown

February 16, 2009

The Greenland and Antarctica ice sheets are melting, but the amounts that will melt and the time it will take are still unknown, according to Richard Alley, Evan Pugh professor of geosciences, Penn State.

Quantifying melting glaciers' effect on ocean currents

May 20, 2011

(PhysOrg.com) -- A team of scientists from Bangor University and the University of Sheffield have used a computer climate model to study how freshwater entering the oceans at the end of ice-ages 140,000 years ago, affected ...

Recommended for you

Robotic insect mimics nature's extreme moves

July 30, 2015

The concept of walking on water might sound supernatural, but in fact it is a quite natural phenomenon. Many small living creatures leverage water's surface tension to maneuver themselves around. One of the most complex maneuvers, ...

The sound of music, according to physicists

July 30, 2015

Joshua Bodon is sick of hearing "Somewhere Over the Rainbow." More specifically, he's sick of hearing one 25-second clip of the song repeated more than 550 times.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.