Laboratory avalanches reveal behaviour of ice flows

Dec 15, 2011

(PhysOrg.com) -- Avalanches created in controlled laboratory environments are helping us to understand the potentially lethal processes that these natural disasters unleash.

In September 2002, one hundred million cubic metres of rock and ice separated from the northern slope of the Kazbek massif in North Ossetia, Russia. The resulting killed 125 people and caused widespread damage. Ice avalanches can travel great distances at speeds of up to 150 miles per hour, but it is not fully understood how they travel so far or so fast. The difficulty lies in observing the processes within avalanches closely. But by creating a laboratory avalanche one researcher at The University of Nottingham has helped us to understand how melting effects flows of ice — even at temperatures below freezing.

Dr Barbara Turnbull, a member of the Fluid and Particle Processes Group in the University’s Faculty of Engineering, has found that the same layer of liquid water at an ice particle’s surface that helps skaters to skate across an ice rink also enhances ice avalanche speeds. The water lubricates particle contacts, resulting in more collisions and melting, which in turn leads to a snowball effect of ever-faster speeds.

This video is not supported by your browser at this time.
A video of Dr Turnbull’s experiment.

To measure this effect Dr Turnbull half filled a narrow Perspex drum with flash-frozen water droplets, rotating it so that the droplets formed a slope down which the ice granules bounced and slipped — simulating ice avalanches.

“Ice avalanches from collapsing glaciers are not common in populated areas, but that may change as global temperatures rise. The Ossetia avalanche alerted researchers to the urgency of gaining a better understanding of the processes that control such flows,” Dr Turnbull said.

“This is a simple experiment, but it tests the theory that surface melting in particles as they collide plays a role in the speed at which avalanches travel — and therefore the amount of damage they can potentially inflict on the local environment and populations.”

Explore further: A new multi-bit 'spin' for MRAM storage

add to favorites email to friend print save as pdf

Related Stories

Avalanches -- triggered from the valley

Dec 02, 2008

Everybody knows that skiers swishing down steep slopes can cause extensive slab avalanches. But there is a less well known phenomenon: A person skiing a gentle slope in the valley triggers a slab avalanche ...

Quantifying melting glaciers' effect on ocean currents

May 20, 2011

(PhysOrg.com) -- A team of scientists from Bangor University and the University of Sheffield have used a computer climate model to study how freshwater entering the oceans at the end of ice-ages 140,000 years ...

Greenland and Antarctic ice sheet melting, rate unknown

Feb 16, 2009

The Greenland and Antarctica ice sheets are melting, but the amounts that will melt and the time it will take are still unknown, according to Richard Alley, Evan Pugh professor of geosciences, Penn State.

Recommended for you

The electric slide dance of DNA knots

1 hour ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

A new multi-bit 'spin' for MRAM storage

Jul 22, 2014

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

User comments : 0