Researchers identify key plant immune response in fight against bacteria

Dec 08, 2011

Researchers at the University of Missouri have found a key process in a plant's immune system response that may help future crops fight off dangerous diseases.

"We study how Arabidopsis, a common weed related to the , fends off infectious agents," said Walter Gassmann, professor of plant sciences and researcher for the Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group. "We have discovered that a protein within the plant known as Enhanced 1 (EDS1) not only plays a key role in the plant's defense but also contributes to the direct recognition of disease agents. Arabidopsis has a widely known genetic structure, and its bacterial pathogens share many tactics with other pathogens such as fungal rusts and mildews. So, if we can translate Arabidopsis' immune response to other , we could eventually help crops, such as soybeans, resist devastating infections."

Gassmann compares plant and pathogen interactions to warfare. For example, bacterial speck targets "communication hubs" of the plant immune system to suppress the plant's long enough to invade and cause disease in tomato and Arabidopsis plant tissue. The present study identified EDS1 as one such hub under attack. Meanwhile, in , immune receptors that act as sentinels guarding EDS1 detect the invader's attack and trigger an alarm that leads to a vigorous plant defense response. Gassmann believes that further studies on EDS1 and its sentinels could determine how to add the alarm response to plants missing the protein or amplify the response in plants that have the protein.

"Farmers know that deploying plants with single sentinels, which commonly only detect a single specific attack strategy, only leads to a boom and bust cycle for disease resistant ," Gassmann said. "Farmers are now to the point where in a crop they must stagger multiple sentinels against each pathogen in order to keep from spreading. If we can identify the actual targets in the plant, like EDS1, and manipulate these genes in key crops, we could extend the planting cycles for a longer period of time. We're still a long way from application in the field; however, this addition could ultimately produce more food."

While genetically modified plants still cause controversy, Gassmann believes that assisting plants with disease resistance derived from nature is better than the use of fungicides. Gassmann also studies how grape production could be improved by using genes from the Missouri Norton grape, which resists powdery mildew, in an effort to alleviate chemical use.

"If we understand the deeper level of plant immunity, we can develop a smarter way of breeding plants that are generally resistant to devastating diseases," Gassmann said.

Gassmann's paper, "Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators," has been accepted by the journal Science. Co-authors at the University of Missouri include post-doctoral researchers Saikat Bhattacharjee and Sang Hee Kim, who has since moved to Indiana University, and undergraduate researcher Morgan Halane from Sedalia, MO. The study was funded by the National Science Foundation.

Explore further: Study finds new links between number of duplicated genes and adaptation

Related Stories

Bacteria surrenders plant war secrets

Jul 13, 2006

U.S. scientists say they've discovered the secret weapon of bacteria -- the way they secure a foothold in plants to launch an invasion.

Recommended for you

Chrono, the last piece of the circadian clock puzzle?

13 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

Drought hormones measured

14 hours ago

Floods and droughts are increasingly in the news, and climate experts say their frequency will only go up in the future. As such, it is crucial for scientists to learn more about how these extreme events affect plants in ...

Research traces the genetic print of the Asturian people

21 hours ago

The DNA of the people of Asturias still maintains the genetic prints of remote ages. A research conducted at the University of Oviedo proves that the old frontiers marked by the pre-Roman Astur settlements have left their ...

User comments : 0

More news stories

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...