International collaboration reveals magnetization textures in NiPd nanostructures

December 8, 2011 By John Unguris

(PhysOrg.com) -- An international collaboration led by the NIST Center for Nanoscale Science and Technology  has used scanning electron microscopy with polarization analysis (SEMPA) to acquire images of the magnetic structure inside patterned nickel-palladium (NiPd) thin film nanostructures, revealing peculiar magnetization textures that can affect the behavior of these ferromagnetic alloys in experimental applications.  

NiPd alloys are used for studying how ferromagnets affect nearby superconductors.  They are also good electron spin injectors and spin analyzers being applied to the development of carbon nanotube-based electronics using electron spin (“spintronics”).  The magnetic orientation of nano-patterned NiPd thin film contacts was expected to be simple, controlled primarily by the shape of the patterned film and the applied magnetic field. 

The SEMPA measurements, along with magnetic force microscopy and spin-polarized photoemission electron microscopy, revealed a surprisingly complex spatial structure of the magnetization.  In some devices, the magnetization was even perpendicular to the expected direction.

The researchers found that complexity arises from stress-induced anisotropies caused by mismatches in both the lattice structures and the thermal expansion coefficients between the NiPd films and the underlying substrates.  Although this stress-induced structure may be a problem for some applications, the researchers believe it can be used as a new route to control the orientation of the magnetization in nano-patterned electrodes.

Explore further: Taking the Stress Out of Magnetic Field Detection

More information: Magnetization textures in NiPd nanostructures, J. Chauleau, B. J. McMorran, R. Belkhou, N. Bergeard, T. O. Menteş, M. Niño, A. Locatelli, J. Unguris, S. Rohart, J. Miltat, and A. Thiaville, Physical Review B 84, 094416 (2011).

Related Stories

Taking the Stress Out of Magnetic Field Detection

January 28, 2009

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology have discovered that a carefully built magnetic sandwich that interleaves layers of a magnetic alloy with a few nanometers of silver “spacer” ...

Unfazed by imperfections

July 8, 2011

While insulating against electrical currents in their interior, the surface of materials called topological insulators permits the flow of electron spins relatively unhindered. The almost lossless flow of spin information ...

Moving forward, spin goes sideways

October 7, 2011

Building electronic devices that work without needing to actually transport electrons is a goal of spintronics researchers, since this could lead to: reduced power consumption, lower levels of signal noise, faster operation, ...

Recommended for you

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

Lobster-Eye imager detects soft X-ray emissions

July 28, 2015

Solar winds are known for powering dangerous space weather events near Earth, which, in turn, endangers space assets. So a large interdisciplinary group of researchers, led by the U.S. National Aeronautics and Space Administration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.