International collaboration reveals magnetization textures in NiPd nanostructures

Dec 08, 2011 By John Unguris

(PhysOrg.com) -- An international collaboration led by the NIST Center for Nanoscale Science and Technology  has used scanning electron microscopy with polarization analysis (SEMPA) to acquire images of the magnetic structure inside patterned nickel-palladium (NiPd) thin film nanostructures, revealing peculiar magnetization textures that can affect the behavior of these ferromagnetic alloys in experimental applications.  

NiPd alloys are used for studying how ferromagnets affect nearby superconductors.  They are also good electron spin injectors and spin analyzers being applied to the development of carbon nanotube-based electronics using electron spin (“spintronics”).  The magnetic orientation of nano-patterned NiPd thin film contacts was expected to be simple, controlled primarily by the shape of the patterned film and the applied magnetic field. 

The SEMPA measurements, along with magnetic force microscopy and spin-polarized photoemission electron microscopy, revealed a surprisingly complex spatial structure of the magnetization.  In some devices, the magnetization was even perpendicular to the expected direction.

The researchers found that complexity arises from stress-induced anisotropies caused by mismatches in both the lattice structures and the thermal expansion coefficients between the NiPd films and the underlying substrates.  Although this stress-induced structure may be a problem for some applications, the researchers believe it can be used as a new route to control the orientation of the magnetization in nano-patterned electrodes.

Explore further: Galaxy dust findings confound view of early Universe

More information: Magnetization textures in NiPd nanostructures, J. Chauleau, B. J. McMorran, R. Belkhou, N. Bergeard, T. O. Menteş, M. Niño, A. Locatelli, J. Unguris, S. Rohart, J. Miltat, and A. Thiaville, Physical Review B 84, 094416 (2011).

Related Stories

Unfazed by imperfections

Jul 08, 2011

While insulating against electrical currents in their interior, the surface of materials called topological insulators permits the flow of electron spins relatively unhindered. The almost lossless flow ...

Moving forward, spin goes sideways

Oct 07, 2011

Building electronic devices that work without needing to actually transport electrons is a goal of spintronics researchers, since this could lead to: reduced power consumption, lower levels of signal noise, faster ...

Taking the Stress Out of Magnetic Field Detection

Jan 28, 2009

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology have discovered that a carefully built magnetic sandwich that interleaves layers of a magnetic alloy with a few nanometers ...

Recommended for you

Galaxy dust findings confound view of early Universe

Jan 31, 2015

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

Building the next generation of efficient computers

Jan 29, 2015

UConn researcher Bryan Huey has uncovered new information about the kinetic properties of multiferroic materials that could be a key breakthrough for scientists looking to create a new generation of low-energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.